10 127
|
|
Visit 10 127's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 127's page at Knotilus! Visit 10 127's page at the original Knot Atlas! |
10 127 Further Notes and Views
Knot presentations
Planar diagram presentation | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X6,14,7,13 X7283 |
Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 16 18 -6 20 10 12 |
Conway Notation | [41,21,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 127"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 127. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 127]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 127]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1],X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],X[19, 12, 20, 13], X[6, 14, 7, 13], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 127]] |
Out[4]= | GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4] |
In[5]:= | BR[Knot[10, 127]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 127]][t] |
Out[6]= | -3 4 6 2 3 |
In[7]:= | Conway[Knot[10, 127]][z] |
Out[7]= | 2 4 6 1 + z - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]} |
In[9]:= | {KnotDet[Knot[10, 127]], KnotSignature[Knot[10, 127]]} |
Out[9]= | {29, -4} |
In[10]:= | J=Jones[Knot[10, 127]][q] |
Out[10]= | -10 2 3 5 5 5 4 2 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 127]} |
In[12]:= | A2Invariant[Knot[10, 127]][q] |
Out[12]= | -30 -26 2 -20 3 -12 3 -8 2 |
In[13]:= | Kauffman[Knot[10, 127]][a, z] |
Out[13]= | 4 6 8 5 7 9 11 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 127]], Vassiliev[3][Knot[10, 127]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[10, 127]][q, t] |
Out[15]= | -5 2 1 1 1 2 1 3 |