10 119
|
|
Visit 10 119's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 119's page at Knotilus! Visit 10 119's page at the original Knot Atlas! |
10 119 Further Notes and Views
Knot presentations
Planar diagram presentation | X1627 X7,18,8,19 X3948 X17,3,18,2 X5,15,6,14 X9,17,10,16 X15,11,16,10 X11,5,12,4 X13,20,14,1 X19,12,20,13 |
Gauss code | -1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4, 2, -10, 9 |
Dowker-Thistlethwaite code | 6 8 14 18 16 4 20 10 2 12 |
Conway Notation | [8*2:.20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-2 z^4-z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 101, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{13}+3 q^{11}-q^9+3 q^7-3 q^5+3 q^3-3 q+2 q^{-7} - q^{-9} +4 q^{-11} -3 q^{-13} +2 q^{-15} -2 q^{-17} +2 q^{-19} -2 q^{-21} + q^{-23} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-2 q^{32}-2 q^{30}+7 q^{28}+q^{26}-11 q^{24}+q^{22}+17 q^{20}-2 q^{18}-22 q^{16}+10 q^{14}+26 q^{12}-20 q^{10}-25 q^8+30 q^6+13 q^4-31 q^2+4+31 q^{-2} -12 q^{-4} -23 q^{-6} +24 q^{-8} +9 q^{-10} -36 q^{-12} +6 q^{-14} +35 q^{-16} -23 q^{-18} -24 q^{-20} +34 q^{-22} +13 q^{-24} -30 q^{-26} -3 q^{-28} +26 q^{-30} -3 q^{-32} -20 q^{-34} +8 q^{-36} +12 q^{-38} -9 q^{-40} -4 q^{-42} +6 q^{-44} - q^{-46} -2 q^{-48} + q^{-50} } |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 119"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 101, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (-1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 119]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 119]] |
Out[3]= | PD[X[1, 6, 2, 7], X[7, 18, 8, 19], X[3, 9, 4, 8], X[17, 3, 18, 2],X[5, 15, 6, 14], X[9, 17, 10, 16], X[15, 11, 16, 10],X[11, 5, 12, 4], X[13, 20, 14, 1], X[19, 12, 20, 13]] |
In[4]:= | GaussCode[Knot[10, 119]] |
Out[4]= | GaussCode[-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4, 2, -10, 9] |
In[5]:= | BR[Knot[10, 119]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 3, 3, 2}] |
In[6]:= | alex = Alexander[Knot[10, 119]][t] |
Out[6]= | 2 10 23 2 3 |
In[7]:= | Conway[Knot[10, 119]][z] |
Out[7]= | 2 4 6 1 - z - 2 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 119], Knot[11, Alternating, 84]} |
In[9]:= | {KnotDet[Knot[10, 119]], KnotSignature[Knot[10, 119]]} |
Out[9]= | {101, 0} |
In[10]:= | J=Jones[Knot[10, 119]][q] |
Out[10]= | -4 4 9 13 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 119]} |
In[12]:= | A2Invariant[Knot[10, 119]][q] |
Out[12]= | -12 2 2 2 3 3 2 4 6 8 10 |
In[13]:= | Kauffman[Knot[10, 119]][a, z] |
Out[13]= | 2 2-2 2 z 3 z 4 z 2 z z 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 119]], Vassiliev[3][Knot[10, 119]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 119]][q, t] |
Out[15]= | 9 1 3 1 6 3 7 6 |