In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 57]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20],
X[19, 17, 20, 16], X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 57]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 9, -6, 4, -5, 3, -7, 8, -9,
6, -8, 7] |
In[4]:= | DTCode[Knot[10, 57]] |
Out[4]= | DTCode[4, 8, 12, 2, 14, 18, 6, 20, 10, 16] |
In[5]:= | br = BR[Knot[10, 57]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 57]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 57]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 57]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 57]][t] |
Out[10]= | 2 8 18 2 3
-23 + -- - -- + -- + 18 t - 8 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 57]][z] |
Out[11]= | 2 4 6
1 + 4 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 57], Knot[11, NonAlternating, 40],
Knot[11, NonAlternating, 46]} |
In[13]:= | {KnotDet[Knot[10, 57]], KnotSignature[Knot[10, 57]]} |
Out[13]= | {79, 2} |
In[14]:= | Jones[Knot[10, 57]][q] |
Out[14]= | -2 3 2 3 4 5 6 7 8
-6 - q + - + 10 q - 12 q + 14 q - 12 q + 10 q - 7 q + 3 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 57]} |
In[16]:= | A2Invariant[Knot[10, 57]][q] |
Out[16]= | -6 -4 -2 2 4 6 8 10 12 14
-1 - q + q - q + 3 q - 2 q + 3 q + q + q + 3 q - 2 q +
16 18 20 22 24
2 q - 2 q - 2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 57]][a, z] |
Out[17]= | 2 2 2 4 4 4
2 2 2 2 2 z 4 z 4 z 4 z 3 z 3 z
-1 - -- + -- + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- +
6 4 2 6 4 2 6 4 2
a a a a a a a a a
6 6
z z
-- + --
4 2
a a |
In[18]:= | Kauffman[Knot[10, 57]][a, z] |
Out[18]= | 2
2 2 2 z 3 z 6 z 2 z z 2 2 z
-1 + -- + -- - -- + -- - --- - --- - --- + - + a z + 4 z + ---- -
6 4 2 9 7 5 3 a 8
a a a a a a a a
2 2 3 3 3 3 4
2 z 8 z 2 z 6 z 18 z 12 z 3 4 5 z
---- + ---- - ---- + ---- + ----- + ----- - 2 a z - 6 z - ---- -
6 2 9 7 5 3 8
a a a a a a a
4 4 4 5 5 5 5 5
z z 11 z z 9 z 23 z 19 z 5 z 5 6
-- - -- - ----- + -- - ---- - ----- - ----- - ---- + a z + 3 z +
6 4 2 9 7 5 3 a
a a a a a a a
6 6 6 6 7 7 7 7 8
3 z 3 z 7 z 2 z 5 z 10 z 9 z 4 z 4 z
---- - ---- - ---- + ---- + ---- + ----- + ---- + ---- + ---- +
8 6 4 2 7 5 3 a 6
a a a a a a a a
8 8 9 9
7 z 3 z z z
---- + ---- + -- + --
4 2 5 3
a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 57]], Vassiliev[3][Knot[10, 57]]} |
Out[19]= | {4, 6} |
In[20]:= | Kh[Knot[10, 57]][q, t] |
Out[20]= | 3 1 2 1 4 2 q 3 5
6 q + 5 q + ----- + ----- + ---- + --- + --- + 7 q t + 5 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
7 q t + 7 q t + 5 q t + 7 q t + 5 q t + 5 q t +
11 5 13 5 13 6 15 6 17 7
2 q t + 5 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 57], 2][q] |
Out[21]= | -7 3 -5 9 17 -2 36 2 3
-47 + q - -- + q + -- - -- + q + -- - 9 q + 88 q - 81 q -
6 4 3 q
q q q
4 5 6 7 8 9 10 11
37 q + 143 q - 95 q - 70 q + 168 q - 82 q - 87 q + 148 q -
12 13 14 15 16 17 18
49 q - 80 q + 97 q - 15 q - 52 q + 42 q + 2 q -
19 20 21 22 23
20 q + 9 q + 2 q - 3 q + q |