| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 47]] | 
| Out[2]=   | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14], 
 X[15, 7, 16, 6], X[11, 19, 12, 18], X[13, 1, 14, 20], 
X[17, 11, 18, 10], X[19, 13, 20, 12], X[7, 2, 8, 3]] | 
| In[3]:= | GaussCode[Knot[10, 47]] | 
| Out[3]=   | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 
  6, -9, 7] | 
| In[4]:= | DTCode[Knot[10, 47]] | 
| Out[4]=   | DTCode[4, 8, 14, 2, 16, 18, 20, 6, 10, 12] | 
| In[5]:= | br = BR[Knot[10, 47]] | 
| Out[5]=   | BR[3, {1, 1, 1, 1, 1, -2, 1, 1, -2, -2}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {3, 10} | 
| In[7]:= | BraidIndex[Knot[10, 47]] | 
| Out[7]=   | 3 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 47]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 47]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Reversible, {2, 3}, 4, 3, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 47]][t] | 
| Out[10]=   |      -4   3    6    7            2      3    4
7 + t   - -- + -- - - - 7 t + 6 t  - 3 t  + t
           3    2   t
t    t | 
| In[11]:= | Conway[Knot[10, 47]][z] | 
| Out[11]=   |        2      4      6    8
1 + 6 z  + 8 z  + 5 z  + z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 47]} | 
| In[13]:= | {KnotDet[Knot[10, 47]], KnotSignature[Knot[10, 47]]} | 
| Out[13]=   | {41, 4} | 
| In[14]:= | Jones[Knot[10, 47]][q] | 
| Out[14]=   |     1            2      3      4      5      6      7      8    9
2 - - - 3 q + 5 q  - 5 q  + 7 q  - 6 q  + 5 q  - 4 q  + 2 q  - q
q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 47]} | 
| In[16]:= | A2Invariant[Knot[10, 47]][q] | 
| Out[16]=   |   -2    2    6    8      10    12      14    18    20      22    26
-q   - q  + q  + q  + 4 q   + q   + 3 q   - q   - q   - 2 q   - q | 
| In[17]:= | HOMFLYPT[Knot[10, 47]][a, z] | 
| Out[17]=   |                   2       2      2      4       4      4    6      6
-5   9    3    8 z    21 z    7 z    5 z    18 z    5 z    z    7 z
-- + -- - -- - ---- + ----- - ---- - ---- + ----- - ---- - -- + ---- - 
 6    4    2     6      4       2      6      4       2     6     4
 a    a    a     a      a       a      a      a       a     a     a
   6    8
 z    z
 -- + --
  2    4
a    a | 
| In[18]:= | Kauffman[Knot[10, 47]][a, z] | 
| Out[18]=   |                                                    2     2       2
5    9    3     z    2 z   z    9 z   8 z   3 z   z     z    15 z
-- + -- + -- - --- + --- - -- - --- - --- - --- - --- + -- - ----- - 
 6    4    2    11    9     7    5     3     a     10    8     6
 a    a    a    a     a     a    a     a           a     a     a
      2      2    3       3      3       3       3      3      4
 26 z    9 z    z     3 z    2 z    19 z    20 z    7 z    2 z
 ----- - ---- + --- - ---- + ---- + ----- + ----- + ---- + ---- - 
   4       2     11     9      7      5       3      a      10
  a       a     a      a      a      a       a             a
    4       4       4       4      5      5       5       5      5
 3 z    15 z    35 z    15 z    3 z    5 z    14 z    11 z    5 z
 ---- + ----- + ----- + ----- + ---- - ---- - ----- - ----- - ---- + 
   8      6       4       2       9      7      5       3      a
  a      a       a       a       a      a      a       a
    6       6       6       6      7    7    7    7      8      8
 3 z    10 z    23 z    10 z    3 z    z    z    z    3 z    5 z
 ---- - ----- - ----- - ----- + ---- + -- - -- + -- + ---- + ---- + 
   8      6       4       2       7     5    3   a      6      4
  a      a       a       a       a     a    a          a      a
    8    9    9
 2 z    z    z
 ---- + -- + --
   2     5    3
a     a    a | 
| In[19]:= | {Vassiliev[2][Knot[10, 47]], Vassiliev[3][Knot[10, 47]]} | 
| Out[19]=   | {6, 11} | 
| In[20]:= | Kh[Knot[10, 47]][q, t] | 
| Out[20]=   |                                          3
  3      5     1      1     q    2 q   q       5        7
 3 q  + 3 q  + ----- + ---- + -- + --- + -- + 3 q  t + 2 q  t + 
               3  3      2    2    t    t
             q  t    q t    t
    7  2      9  2      9  3      11  3      11  4      13  4
 4 q  t  + 3 q  t  + 2 q  t  + 4 q   t  + 3 q   t  + 2 q   t  + 
  13  5      15  5    15  6    17  6    19  7
q   t  + 3 q   t  + q   t  + q   t  + q   t | 
| In[21]:= | ColouredJones[Knot[10, 47], 2][q] | 
| Out[21]=   |       -5   2     -3   6    5             2       3       4    5
-6 + q   - -- - q   + -- - - + 14 q - 4 q  - 15 q  + 19 q  + q  - 
            4          2   q
          q          q
     6       7      8       9       10       11       12       13
 22 q  + 20 q  + 7 q  - 26 q  + 17 q   + 11 q   - 25 q   + 11 q   + 
     14       15      16      17       18      19      20      21
 12 q   - 20 q   + 8 q   + 7 q   - 13 q   + 7 q   + 2 q   - 7 q   + 
    22    23      24    25
4 q   + q   - 2 q   + q |