L6a1

From Knot Atlas
Revision as of 19:46, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L5a1.gif

L5a1

L6a2.gif

L6a2

L6a1.gif Visit L6a1's page at Knotilus!

Visit L6a1's page at the original Knot Atlas!

L6a1 is in the Rolfsen table of links.



A kolam with two cycles/components[1]
Depiction with two eights interlaced
Mongolian ornament ; the two eights are horizontal
Another one, sum of two L6a1
Another depiction

Knot presentations

Planar diagram presentation X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10
Gauss code {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L6a1/V 2,1 Data:L6a1/V 3,1 Data:L6a1/V 4,1 Data:L6a1/V 4,2 Data:L6a1/V 4,3 Data:L6a1/V 5,1 Data:L6a1/V 5,2 Data:L6a1/V 5,3 Data:L6a1/V 5,4 Data:L6a1/V 6,1 Data:L6a1/V 6,2 Data:L6a1/V 6,3 Data:L6a1/V 6,4 Data:L6a1/V 6,5 Data:L6a1/V 6,6 Data:L6a1/V 6,7 Data:L6a1/V 6,8 Data:L6a1/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L6a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
4      11
2     1 -1
0    11 0
-2   22  0
-4  1    1
-6  2    2
-811     0
-101      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[6, Alternating, 1]]
Out[2]=  
6
In[3]:=
PD[Link[6, Alternating, 1]]
Out[3]=  
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], 
  X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[4]:=
GaussCode[Link[6, Alternating, 1]]
Out[4]=  
GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}]
In[5]:=
BR[Link[6, Alternating, 1]]
Out[5]=  
BR[Link[6, Alternating, 1]]
In[6]:=
alex = Alexander[Link[6, Alternating, 1]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[6, Alternating, 1]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]}
Out[9]=  
{Infinity, -1}
In[10]:=
J=Jones[Link[6, Alternating, 1]][q]
Out[10]=  
  -(9/2)    -(7/2)    3      2        2                   3/2

-q + q - ---- + ---- - ------- + 2 Sqrt[q] - q

                     5/2    3/2   Sqrt[q]
q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[6, Alternating, 1]][q]
Out[12]=  
 -16    2     -12    2    2     -6    -4    -2    2    6

q + --- + q + --- + -- + q + q - q - q + q

       14           10    8
q q q
In[13]:=
Kauffman[Link[6, Alternating, 1]][a, z]
Out[13]=  
      3    5                                         3
4   a    a    z    3        5        2      2  2   z     5  3      4

a - -- - -- + - + a z + 2 a z + 3 z + 3 a z - -- - a z - 2 z -

    z    z    a                                    a

    2  4    4  4      5    3  5
3 a z - a z - a z - a z
In[14]:=
{Vassiliev[2][Link[6, Alternating, 1]], Vassiliev[3][Link[6, Alternating, 1]]}
Out[14]=  
      53

{0, -(--)}

24
In[15]:=
Kh[Link[6, Alternating, 1]][q, t]
Out[15]=  
                         1                  1

1 + Alternating + ---------------- + --------------- +

                            4  10              4  8
                 Alternating  q     Alternating  q

        1                 2                 1          2
 --------------- + --------------- + --------------- + -- + 
            3  8              2  6              2  4    2
 Alternating  q    Alternating  q    Alternating  q    q

       2                       2              2  4
 -------------- + Alternating q  + Alternating  q
              2
Alternating q