T(4,3)
|
|
Visit [[[:Template:KnotilusURL]] T(4,3)'s page] at Knotilus!
Visit T(4,3)'s page at the original Knot Atlas! | |
See also 8_19. |
T(4,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X5,11,6,10 X16,12,1,11 X1726 X12,8,13,7 X13,3,14,2 X8493 X9,15,10,14 X4,16,5,15 |
Gauss code | -3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2 |
Dowker-Thistlethwaite code | 6 -8 10 -12 14 -16 2 -4 |
Conway Notation | Data:T(4,3)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(4,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (5, 10) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(4,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[4, 3]] |
Out[2]= | 8 |
In[3]:= | PD[TorusKnot[4, 3]] |
Out[3]= | PD[X[5, 11, 6, 10], X[16, 12, 1, 11], X[1, 7, 2, 6], X[12, 8, 13, 7], X[13, 3, 14, 2], X[8, 4, 9, 3], X[9, 15, 10, 14], X[4, 16, 5, 15]] |
In[4]:= | GaussCode[TorusKnot[4, 3]] |
Out[4]= | GaussCode[-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2] |
In[5]:= | BR[TorusKnot[4, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[4, 3]][t] |
Out[6]= | -3 -2 2 3 1 + Alternating - Alternating - Alternating + Alternating |
In[7]:= | Conway[TorusKnot[4, 3]][z] |
Out[7]= | 2 4 6 1 + 5 z + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 19]} |
In[9]:= | {KnotDet[TorusKnot[4, 3]], KnotSignature[TorusKnot[4, 3]]} |
Out[9]= | {3, 6} |
In[10]:= | J=Jones[TorusKnot[4, 3]][q] |
Out[10]= | 3 5 8 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 19]} |
In[12]:= | A2Invariant[TorusKnot[4, 3]][q] |
Out[12]= | 10 12 14 16 18 22 24 26 28 32 q + q + 2 q + 2 q + 2 q - q - 2 q - 2 q - q + q |
In[13]:= | Kauffman[TorusKnot[4, 3]][a, z] |
Out[13]= | 2 2 3 3 4-10 5 5 5 z 5 z 10 z 10 z 5 z 5 z 6 z |
In[14]:= | {Vassiliev[2][TorusKnot[4, 3]], Vassiliev[3][TorusKnot[4, 3]]} |
Out[14]= | {0, 10} |
In[15]:= | Kh[TorusKnot[4, 3]][q, t] |
Out[15]= | 5 7 2 9 4 11 3 13 |