In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 7]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 7]] |
Out[3]= | PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[11, 13, 12, 16], X[3, 11, 4, 10],
X[9, 1, 10, 4], X[7, 15, 8, 14], X[13, 5, 14, 8], X[15, 9, 16, 12]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 7]] |
Out[4]= | GaussCode[{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 8},
{-7, 6, -8, 3}] |
In[5]:= | BR[Link[8, NonAlternating, 7]] |
Out[5]= | BR[Link[8, NonAlternating, 7]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 7]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 7]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 7]], KnotSignature[Link[8, NonAlternating, 7]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[8, NonAlternating, 7]][q] |
Out[10]= | 3/2 5/2 7/2 9/2 11/2 13/2
-3 Sqrt[q] + 2 q - 4 q + q - 4 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 7]][q] |
Out[12]= | 2 4 6 8 10 12 14 16
3 + 3 q + 5 q + 8 q + 10 q + 13 q + 12 q + 11 q + 8 q +
18 20 22
4 q + 3 q + q |
In[13]:= | Kauffman[Link[8, NonAlternating, 7]][a, z] |
Out[13]= | -8 15 8 1 3 3 1 3 6 3
-- - -- - -- - ----- - ----- - ----- - ---- + ----- + ----- + ----- +
6 4 2 7 3 5 3 3 3 3 6 2 4 2 2 2
a a a a z a z a z a z a z a z a z
2 2
4 9 9 4 6 z 14 z 14 z 6 z 6 z 12 z
---- + ---- + ---- + --- - --- - ---- - ---- - --- + ---- + ----- +
7 5 3 a z 7 5 3 a 6 4
a z a z a z a a a a a
2 3 3 3 4 4 4 5 5 5
6 z 4 z 16 z 12 z z 2 z 3 z z 5 z 4 z
---- + ---- + ----- + ----- + -- - ---- - ---- - -- - ---- - ---- -
2 7 5 3 6 4 2 7 5 3
a a a a a a a a a a
6 6
z z
-- - --
6 4
a a |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 7]], Vassiliev[3][Link[8, NonAlternating, 7]]} |
Out[14]= | 77
{0, --}
6 |
In[15]:= | Kh[Link[8, NonAlternating, 7]][q, t] |
Out[15]= | 2 4 2 4 2 6 2 8 3 8 4 10 4
3 + 4 q + q + 3 q t + q t + 3 q t + q t + 4 q t + 4 q t +
10 5 14 6
q t + q t |