In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 7]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 7]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[10, 5, 11, 6],
X[12, 3, 13, 4], X[16, 11, 5, 12], X[2, 9, 3, 10], X[8, 13, 9, 14]] |
In[4]:= | GaussCode[Link[8, Alternating, 7]] |
Out[4]= | GaussCode[{1, -7, 5, -3}, {4, -1, 2, -8, 7, -4, 6, -5, 8, -2, 3, -6}] |
In[5]:= | BR[Link[8, Alternating, 7]] |
Out[5]= | BR[Link[8, Alternating, 7]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 7]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 7]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 7]], KnotSignature[Link[8, Alternating, 7]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, Alternating, 7]][q] |
Out[10]= | -(19/2) 3 4 6 7 5 6 3 -(3/2)
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - q
17/2 15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 7]][q] |
Out[12]= | -30 -28 3 -22 -20 3 2 4 -12 2 -8
q - q - --- - q + q + --- + --- + --- + q + --- + q -
26 18 16 14 10
q q q q q
2 -4
-- + q
6
q |
In[13]:= | Kauffman[Link[8, Alternating, 7]][a, z] |
Out[13]= | 5 7 9
6 8 10 2 a 3 a a 5 7 9
-3 a - 3 a - a + ---- + ---- + -- - 5 a z - 6 a z - 2 a z -
z z z
11 6 2 8 2 10 2 3 3 5 3 7 3
a z + a z - 4 a z - 5 a z - a z + 8 a z + 12 a z +
9 3 11 3 4 4 6 4 8 4 10 4
5 a z + 2 a z - 3 a z + 5 a z + 16 a z + 8 a z -
5 5 7 5 9 5 11 5 6 6 8 6 10 6
6 a z - 4 a z + a z - a z - 5 a z - 8 a z - 3 a z -
7 7 9 7
2 a z - 2 a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 7]], Vassiliev[3][Link[8, Alternating, 7]]} |
Out[14]= | 19
{0, --}
24 |
In[15]:= | Kh[Link[8, Alternating, 7]][q, t] |
Out[15]= | -4 -2 1 2 1 2 2 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
20 8 18 7 16 7 16 6 14 6 14 5
q t q t q t q t q t q t
2 3 5 3 2 3 3 3
------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
12 5 12 4 10 4 10 3 8 3 8 2 6 2 4
q t q t q t q t q t q t q t q t |