L8n6

From Knot Atlas
Revision as of 20:15, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L8n5.gif

L8n5

L8n7.gif

L8n7

L8n6.gif Visit L8n6's page at Knotilus!

Visit L8n6's page at the original Knot Atlas!

L8n6 is [math]\displaystyle{ 8^3_{10} }[/math] in the Rolfsen table of links.


L8n6 Further Notes and Views

Knot presentations

Planar diagram presentation X6172 X10,3,11,4 X11,16,12,13 X7,14,8,15 X13,8,14,9 X15,12,16,5 X2536 X4,9,1,10
Gauss code {1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6}

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(t(3)-1) (t(3)+1) (t(1) t(2)+t(3))}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{-2} + q^{-6} + q^{-7} + q^{-9} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^{10} z^{-2} -2 a^8 z^{-2} -2 a^8+a^6 z^{-2} +z^4 a^4+4 z^2 a^4+2 a^4 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{10} z^6-6 a^{10} z^4+10 a^{10} z^2+a^{10} z^{-2} -6 a^{10}+a^9 z^5-6 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +a^8 z^6-7 a^8 z^4+14 a^8 z^2+2 a^8 z^{-2} -9 a^8+a^7 z^5-6 a^7 z^3+8 a^7 z-2 a^7 z^{-1} +a^6 z^{-2} -2 a^6+a^4 z^4-4 a^4 z^2+2 a^4 }[/math] (db)

Vassiliev invariants

V2 and V3: (0, [math]\displaystyle{ \frac{106}{3} }[/math])
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L8n6/V 2,1 Data:L8n6/V 3,1 Data:L8n6/V 4,1 Data:L8n6/V 4,2 Data:L8n6/V 4,3 Data:L8n6/V 5,1 Data:L8n6/V 5,2 Data:L8n6/V 5,3 Data:L8n6/V 5,4 Data:L8n6/V 6,1 Data:L8n6/V 6,2 Data:L8n6/V 6,3 Data:L8n6/V 6,4 Data:L8n6/V 6,5 Data:L8n6/V 6,6 Data:L8n6/V 6,7 Data:L8n6/V 6,8 Data:L8n6/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-3 is the signature of L8n6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5        11
-7     11  0
-9         0
-11   131   1
-13    2    2
-15  1      1
-171        1
-191        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[8, NonAlternating, 6]]
Out[2]=  
8
In[3]:=
PD[Link[8, NonAlternating, 6]]
Out[3]=  
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 16, 12, 13], X[7, 14, 8, 15], 
  X[13, 8, 14, 9], X[15, 12, 16, 5], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[4]:=
GaussCode[Link[8, NonAlternating, 6]]
Out[4]=  
GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6}]
In[5]:=
BR[Link[8, NonAlternating, 6]]
Out[5]=  
BR[Link[8, NonAlternating, 6]]
In[6]:=
alex = Alexander[Link[8, NonAlternating, 6]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[8, NonAlternating, 6]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[8, NonAlternating, 6]], KnotSignature[Link[8, NonAlternating, 6]]}
Out[9]=  
{Infinity, -3}
In[10]:=
J=Jones[Link[8, NonAlternating, 6]][q]
Out[10]=  
 -9    -7    -6    -2
q   + q   + q   + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[8, NonAlternating, 6]][q]
Out[12]=  
 -30    3     4     5     4     3     2     -16    -14    -10    -8

q + --- + --- + --- + --- + --- + --- + q + q + q + q +

       28    26    24    22    20    18
      q     q     q     q     q     q

  -6
q
In[13]:=
Kauffman[Link[8, NonAlternating, 6]][a, z]
Out[13]=  
                              6      8    10      7      9
  4      6      8      10   a    2 a    a     2 a    2 a       7

2 a - 2 a - 9 a - 6 a + -- + ---- + --- - ---- - ---- + 8 a z +

                             2     2     2     z      z
                            z     z     z

    9        4  2       8  2       10  2      7  3      9  3    4  4
 8 a  z - 4 a  z  + 14 a  z  + 10 a   z  - 6 a  z  - 6 a  z  + a  z  - 

    8  4      10  4    7  5    9  5    8  6    10  6
7 a z - 6 a z + a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Link[8, NonAlternating, 6]], Vassiliev[3][Link[8, NonAlternating, 6]]}
Out[14]=  
    106

{0, ---}

3
In[15]:=
Kh[Link[8, NonAlternating, 6]][q, t]
Out[15]=  
 -5    -3     1        1        1        1        2        3

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            19  8    17  8    15  6    11  5    13  4    11  4
           q   t    q   t    q   t    q   t    q   t    q   t

   1        1       1
 ------ + ----- + -----
  11  3    7  3    7  2
q t q t q t