In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 6]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 6]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 16, 12, 13], X[7, 14, 8, 15],
X[13, 8, 14, 9], X[15, 12, 16, 5], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 6]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6}] |
In[5]:= | BR[Link[8, NonAlternating, 6]] |
Out[5]= | BR[Link[8, NonAlternating, 6]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 6]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 6]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 6]], KnotSignature[Link[8, NonAlternating, 6]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, NonAlternating, 6]][q] |
Out[10]= | -9 -7 -6 -2
q + q + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 6]][q] |
Out[12]= | -30 3 4 5 4 3 2 -16 -14 -10 -8
q + --- + --- + --- + --- + --- + --- + q + q + q + q +
28 26 24 22 20 18
q q q q q q
-6
q |
In[13]:= | Kauffman[Link[8, NonAlternating, 6]][a, z] |
Out[13]= | 6 8 10 7 9
4 6 8 10 a 2 a a 2 a 2 a 7
2 a - 2 a - 9 a - 6 a + -- + ---- + --- - ---- - ---- + 8 a z +
2 2 2 z z
z z z
9 4 2 8 2 10 2 7 3 9 3 4 4
8 a z - 4 a z + 14 a z + 10 a z - 6 a z - 6 a z + a z -
8 4 10 4 7 5 9 5 8 6 10 6
7 a z - 6 a z + a z + a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 6]], Vassiliev[3][Link[8, NonAlternating, 6]]} |
Out[14]= | 106
{0, ---}
3 |
In[15]:= | Kh[Link[8, NonAlternating, 6]][q, t] |
Out[15]= | -5 -3 1 1 1 1 2 3
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
19 8 17 8 15 6 11 5 13 4 11 4
q t q t q t q t q t q t
1 1 1
------ + ----- + -----
11 3 7 3 7 2
q t q t q t |