10 20
|
|
|
|
Visit 10 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 20's page at Knotilus! Visit 10 20's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,18,6,19 X7,20,8,1 X19,6,20,7 X9,16,10,17 X15,10,16,11 X17,8,18,9 |
| Gauss code | -1, 4, -3, 1, -5, 7, -6, 10, -8, 9, -2, 3, -4, 2, -9, 8, -10, 5, -7, 6 |
| Dowker-Thistlethwaite code | 4 12 18 20 16 14 2 10 8 6 |
| Conway Notation | [352] |
|
Length is 12, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+9 t-11+9 t^{-1} -3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 35, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+9 t-11+9 t^{-1} -3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_162, K11n117, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (-3, 6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^3+3 q-3- q^{-1} +6 q^{-2} -7 q^{-3} +10 q^{-5} -13 q^{-6} +2 q^{-7} +15 q^{-8} -19 q^{-9} +2 q^{-10} +19 q^{-11} -19 q^{-12} - q^{-13} +19 q^{-14} -15 q^{-15} -5 q^{-16} +17 q^{-17} -9 q^{-18} -7 q^{-19} +12 q^{-20} -3 q^{-21} -6 q^{-22} +5 q^{-23} -2 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-q^8+3 q^5-3 q^4-q^3-q^2+7 q-3-4 q^{-1} -4 q^{-2} +11 q^{-3} -4 q^{-5} -9 q^{-6} +8 q^{-7} +6 q^{-8} + q^{-9} -9 q^{-10} -5 q^{-11} +6 q^{-12} +11 q^{-13} -2 q^{-14} -15 q^{-15} -2 q^{-16} +15 q^{-17} +8 q^{-18} -16 q^{-19} -7 q^{-20} +9 q^{-21} +12 q^{-22} -8 q^{-23} -11 q^{-24} +13 q^{-26} +5 q^{-27} -12 q^{-28} -12 q^{-29} +12 q^{-30} +18 q^{-31} -10 q^{-32} -22 q^{-33} +6 q^{-34} +24 q^{-35} - q^{-36} -23 q^{-37} -4 q^{-38} +20 q^{-39} +6 q^{-40} -13 q^{-41} -9 q^{-42} +9 q^{-43} +7 q^{-44} -4 q^{-45} -5 q^{-46} +2 q^{-47} +2 q^{-48} -2 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-q^{15}+3 q^{11}-4 q^{10}+9 q^6-9 q^5-2 q^4-3 q^3+q^2+22 q-13-6 q^{-1} -14 q^{-2} +44 q^{-4} -11 q^{-5} -9 q^{-6} -37 q^{-7} -13 q^{-8} +73 q^{-9} +8 q^{-10} - q^{-11} -73 q^{-12} -50 q^{-13} +96 q^{-14} +45 q^{-15} +33 q^{-16} -106 q^{-17} -109 q^{-18} +94 q^{-19} +81 q^{-20} +85 q^{-21} -114 q^{-22} -159 q^{-23} +73 q^{-24} +89 q^{-25} +125 q^{-26} -99 q^{-27} -180 q^{-28} +57 q^{-29} +77 q^{-30} +137 q^{-31} -83 q^{-32} -174 q^{-33} +53 q^{-34} +56 q^{-35} +129 q^{-36} -63 q^{-37} -153 q^{-38} +47 q^{-39} +29 q^{-40} +110 q^{-41} -38 q^{-42} -119 q^{-43} +42 q^{-44} -5 q^{-45} +80 q^{-46} -13 q^{-47} -74 q^{-48} +45 q^{-49} -34 q^{-50} +40 q^{-51} -5 q^{-52} -33 q^{-53} +59 q^{-54} -41 q^{-55} +6 q^{-56} -16 q^{-57} -16 q^{-58} +69 q^{-59} -22 q^{-60} -4 q^{-61} -29 q^{-62} -22 q^{-63} +57 q^{-64} -2 q^{-65} +6 q^{-66} -23 q^{-67} -28 q^{-68} +29 q^{-69} +3 q^{-70} +13 q^{-71} -8 q^{-72} -19 q^{-73} +10 q^{-74} - q^{-75} +7 q^{-76} -7 q^{-78} +3 q^{-79} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} } |
| 5 | Not Available |
| 6 | Not Available |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| See/edit the Rolfsen_Splice_Template.
Back to the top. |
|



