In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 62]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[5, 15, 6, 14],
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20],
X[19, 13, 20, 12], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 62]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 6, -5, 7, -10, 2, -3, 9, -8, 4, -6, 5, -7,
3, -9, 8] |
In[4]:= | DTCode[Knot[10, 62]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 18, 20, 6, 8, 12] |
In[5]:= | br = BR[Knot[10, 62]] |
Out[5]= | BR[3, {1, 1, 1, 1, -2, 1, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 62]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 62]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 62]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 62]][t] |
Out[10]= | -4 3 6 8 2 3 4
9 + t - -- + -- - - - 8 t + 6 t - 3 t + t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 62]][z] |
Out[11]= | 2 4 6 8
1 + 5 z + 8 z + 5 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 62], Knot[11, NonAlternating, 76],
Knot[11, NonAlternating, 78]} |
In[13]:= | {KnotDet[Knot[10, 62]], KnotSignature[Knot[10, 62]]} |
Out[13]= | {45, 4} |
In[14]:= | Jones[Knot[10, 62]][q] |
Out[14]= | 1 2 3 4 5 6 7 8 9
2 - - - 3 q + 6 q - 6 q + 7 q - 7 q + 6 q - 4 q + 2 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 62]} |
In[16]:= | A2Invariant[Knot[10, 62]][q] |
Out[16]= | -2 2 4 6 8 10 12 14 22 26
-q - q + q + 2 q + q + 3 q - q + 2 q - 2 q - q |
In[17]:= | HOMFLYPT[Knot[10, 62]][a, z] |
Out[17]= | 2 2 2 4 4 4 6 6
-4 7 2 8 z 20 z 7 z 5 z 18 z 5 z z 7 z
-- + -- - -- - ---- + ----- - ---- - ---- + ----- - ---- - -- + ---- -
6 4 2 6 4 2 6 4 2 6 4
a a a a a a a a a a a
6 8
z z
-- + --
2 4
a a |
In[18]:= | Kauffman[Knot[10, 62]][a, z] |
Out[18]= | 2 2 2
4 7 2 z z z 6 z 5 z 2 z z 4 z 8 z
-- + -- + -- - --- + -- - -- - --- - --- - --- - --- + ---- - ---- -
6 4 2 11 9 7 5 3 a 10 8 6
a a a a a a a a a a a
2 2 3 3 3 3 3 3 4
23 z 10 z z 2 z 5 z 16 z 15 z 7 z 2 z
----- - ----- + --- - ---- + ---- + ----- + ----- + ---- + ---- -
4 2 11 9 7 5 3 a 10
a a a a a a a a
4 4 4 4 5 5 5 5 5
6 z 6 z 30 z 16 z 3 z 8 z 15 z 9 z 5 z
---- + ---- + ----- + ----- + ---- - ---- - ----- - ---- - ---- +
8 6 4 2 9 7 5 3 a
a a a a a a a a
6 6 6 6 7 7 7 7 8 8
4 z 7 z 21 z 10 z 4 z 2 z z z 3 z 5 z
---- - ---- - ----- - ----- + ---- + ---- - -- + -- + ---- + ---- +
8 6 4 2 7 5 3 a 6 4
a a a a a a a a a
8 9 9
2 z z z
---- + -- + --
2 5 3
a a a |
In[19]:= | {Vassiliev[2][Knot[10, 62]], Vassiliev[3][Knot[10, 62]]} |
Out[19]= | {5, 9} |
In[20]:= | Kh[Knot[10, 62]][q, t] |
Out[20]= | 3
3 5 1 1 q 2 q q 5 7
4 q + 3 q + ----- + ---- + -- + --- + -- + 3 q t + 3 q t +
3 3 2 2 t t
q t q t t
7 2 9 2 9 3 11 3 11 4 13 4
4 q t + 3 q t + 3 q t + 4 q t + 3 q t + 3 q t +
13 5 15 5 15 6 17 6 19 7
q t + 3 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 62], 2][q] |
Out[21]= | -5 2 -3 6 5 2 3 4 5
-7 + q - -- - q + -- - - + 15 q - 3 q - 18 q + 23 q + 3 q -
4 2 q
q q
6 7 8 9 10 11 12 13
29 q + 24 q + 11 q - 36 q + 19 q + 19 q - 34 q + 12 q +
14 15 16 17 18 19 20 21
20 q - 27 q + 7 q + 13 q - 16 q + 5 q + 5 q - 7 q +
22 23 24 25
3 q + q - 2 q + q |