K11a44
|
|
|
|
Visit K11a44's page at Knotilus!
Visit K11a44's page at the original Knot Atlas! |
| K11a44 Quick Notes |
K11a44 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X20,10,21,9 X16,11,17,12 X18,13,19,14 X6,15,7,16 X12,17,13,18 X22,20,1,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -7, 10, -5, 11, -10 |
| Dowker-Thistlethwaite code | 4 8 14 2 20 16 18 6 12 22 10 |
| Conway Notation | [3,21,21,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{t^2-t+1\right\}} |
| Determinant and Signature | { 117, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+6 q^4-12 q^3+16 q^2-18 q+20-16 q^{-1} +13 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-15 z^2 a^{-2} +3 z^2 a^{-4} +22 z^2-5 a^2-9 a^{-2} +2 a^{-4} +13} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+7 z^9 a^{-1} +3 z^9 a^{-3} +7 a^2 z^8+10 z^8 a^{-2} +4 z^8 a^{-4} +13 z^8+6 a^3 z^7+5 a z^7-2 z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +3 a^4 z^6-11 a^2 z^6-28 z^6 a^{-2} -8 z^6 a^{-4} +z^6 a^{-6} -33 z^6+a^5 z^5-10 a^3 z^5-25 a z^5-27 z^5 a^{-1} -22 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+11 a^2 z^4+28 z^4 a^{-2} +3 z^4 a^{-4} -3 z^4 a^{-6} +37 z^4-2 a^5 z^3+8 a^3 z^3+31 a z^3+42 z^3 a^{-1} +30 z^3 a^{-3} +9 z^3 a^{-5} +a^4 z^2-11 a^2 z^2-19 z^2 a^{-2} -z^2 a^{-4} +2 z^2 a^{-6} -28 z^2+a^5 z-4 a^3 z-15 a z-21 z a^{-1} -15 z a^{-3} -4 z a^{-5} +5 a^2+9 a^{-2} +2 a^{-4} +13} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+q^{12}-4 q^{10}-q^4+8 q^2+1+6 q^{-2} - q^{-4} -3 q^{-6} -5 q^{-10} + q^{-12} + q^{-18} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+10 q^{72}-10 q^{70}+4 q^{68}+11 q^{66}-32 q^{64}+56 q^{62}-76 q^{60}+72 q^{58}-44 q^{56}-17 q^{54}+110 q^{52}-199 q^{50}+259 q^{48}-246 q^{46}+131 q^{44}+52 q^{42}-273 q^{40}+435 q^{38}-479 q^{36}+360 q^{34}-112 q^{32}-197 q^{30}+437 q^{28}-512 q^{26}+392 q^{24}-123 q^{22}-181 q^{20}+367 q^{18}-368 q^{16}+183 q^{14}+119 q^{12}-385 q^{10}+511 q^8-392 q^6+97 q^4+299 q^2-617+749 q^{-2} -608 q^{-4} +270 q^{-6} +167 q^{-8} -537 q^{-10} +735 q^{-12} -661 q^{-14} +376 q^{-16} +9 q^{-18} -349 q^{-20} +498 q^{-22} -427 q^{-24} +162 q^{-26} +140 q^{-28} -358 q^{-30} +388 q^{-32} -232 q^{-34} -64 q^{-36} +347 q^{-38} -505 q^{-40} +463 q^{-42} -264 q^{-44} -42 q^{-46} +310 q^{-48} -453 q^{-50} +451 q^{-52} -307 q^{-54} +106 q^{-56} +93 q^{-58} -223 q^{-60} +258 q^{-62} -217 q^{-64} +131 q^{-66} -34 q^{-68} -36 q^{-70} +74 q^{-72} -78 q^{-74} +63 q^{-76} -35 q^{-78} +13 q^{-80} +3 q^{-82} -12 q^{-84} +10 q^{-86} -9 q^{-88} +5 q^{-90} -2 q^{-92} + q^{-94} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a44"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{t^2-t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 117, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+6 q^4-12 q^3+16 q^2-18 q+20-16 q^{-1} +13 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-15 z^2 a^{-2} +3 z^2 a^{-4} +22 z^2-5 a^2-9 a^{-2} +2 a^{-4} +13} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+7 z^9 a^{-1} +3 z^9 a^{-3} +7 a^2 z^8+10 z^8 a^{-2} +4 z^8 a^{-4} +13 z^8+6 a^3 z^7+5 a z^7-2 z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +3 a^4 z^6-11 a^2 z^6-28 z^6 a^{-2} -8 z^6 a^{-4} +z^6 a^{-6} -33 z^6+a^5 z^5-10 a^3 z^5-25 a z^5-27 z^5 a^{-1} -22 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+11 a^2 z^4+28 z^4 a^{-2} +3 z^4 a^{-4} -3 z^4 a^{-6} +37 z^4-2 a^5 z^3+8 a^3 z^3+31 a z^3+42 z^3 a^{-1} +30 z^3 a^{-3} +9 z^3 a^{-5} +a^4 z^2-11 a^2 z^2-19 z^2 a^{-2} -z^2 a^{-4} +2 z^2 a^{-6} -28 z^2+a^5 z-4 a^3 z-15 a z-21 z a^{-1} -15 z a^{-3} -4 z a^{-5} +5 a^2+9 a^{-2} +2 a^{-4} +13} |
Vassiliev invariants
| V2 and V3: | (3, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of K11a44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 44]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 44]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7],X[20, 10, 21, 9], X[16, 11, 17, 12], X[18, 13, 19, 14], X[6, 15, 7, 16], X[12, 17, 13, 18], X[22, 20, 1, 19],X[10, 22, 11, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 44]] |
Out[4]= | GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -7, 10, -5, 11, -10] |
In[5]:= | BR[Knot[11, Alternating, 44]] |
Out[5]= | BR[Knot[11, Alternating, 44]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 44]][t] |
Out[6]= | -4 5 14 24 2 3 4 |
In[7]:= | Conway[Knot[11, Alternating, 44]][z] |
Out[7]= | 2 4 6 8 1 + 3 z + 4 z + 3 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 44], Knot[11, Alternating, 47],
Knot[11, Alternating, 109]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 44]], KnotSignature[Knot[11, Alternating, 44]]} |
Out[9]= | {117, 0} |
In[10]:= | J=Jones[Knot[11, Alternating, 44]][q] |
Out[10]= | -5 3 8 13 16 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 44], Knot[11, Alternating, 47]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 44]][q] |
Out[12]= | -14 -12 4 -4 8 2 4 6 10 12 18 |
In[13]:= | Kauffman[Knot[11, Alternating, 44]][a, z] |
Out[13]= | 2 9 2 4 z 15 z 21 z 3 5 |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 44]], Vassiliev[3][Knot[11, Alternating, 44]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[11, Alternating, 44]][q, t] |
Out[15]= | 11 1 2 1 6 2 7 6 |


