L11n158

From Knot Atlas
Revision as of 12:12, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n157.gif

L11n157

L11n159.gif

L11n159

L11n158.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n158 at Knotilus!


Link Presentations

[edit Notes on L11n158's Link Presentations]

Planar diagram presentation X8192 X16,7,17,8 X3,10,4,11 X2,15,3,16 X14,10,15,9 X11,19,12,18 X12,5,13,6 X6,21,1,22 X20,14,21,13 X22,17,7,18 X19,4,20,5
Gauss code {1, -4, -3, 11, 7, -8}, {2, -1, 5, 3, -6, -7, 9, -5, 4, -2, 10, 6, -11, -9, 8, -10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n158 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
0        11
-2       21-1
-4      1  1
-6     22  0
-8    21   1
-10   12    1
-12  22     0
-14 12      1
-16 1       -1
-181        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n157.gif

L11n157

L11n159.gif

L11n159