L11n159
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n159's Link Presentations]
| Planar diagram presentation | X8192 X7,17,8,16 X10,4,11,3 X2,15,3,16 X14,10,15,9 X11,19,12,18 X5,13,6,12 X21,1,22,6 X20,14,21,13 X17,7,18,22 X4,20,5,19 |
| Gauss code | {1, -4, 3, -11, -7, 8}, {-2, -1, 5, -3, -6, 7, 9, -5, 4, 2, -10, 6, 11, -9, -8, 10} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{15/2}-2 q^{13/2}+2 q^{11/2}-4 q^{9/2}+2 q^{7/2}-3 q^{5/2}+2 q^{3/2}-\sqrt{q}} (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^7 a^{-5} +z^5 a^{-3} -5 z^5 a^{-5} +z^5 a^{-7} +4 z^3 a^{-3} -6 z^3 a^{-5} +4 z^3 a^{-7} +3 z a^{-3} -2 z a^{-5} +z a^{-7} -z a^{-9} + a^{-3} z^{-1} -2 a^{-7} z^{-1} + a^{-9} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^9 a^{-5} -z^9 a^{-7} -2 z^8 a^{-4} -3 z^8 a^{-6} -z^8 a^{-8} -z^7 a^{-3} +3 z^7 a^{-5} +4 z^7 a^{-7} +10 z^6 a^{-4} +15 z^6 a^{-6} +5 z^6 a^{-8} +5 z^5 a^{-3} +4 z^5 a^{-5} -z^5 a^{-7} -12 z^4 a^{-4} -19 z^4 a^{-6} -7 z^4 a^{-8} -7 z^3 a^{-3} -12 z^3 a^{-5} -5 z^3 a^{-7} +2 z^2 a^{-4} +8 z^2 a^{-6} +7 z^2 a^{-8} +z^2 a^{-10} +4 z a^{-3} +6 z a^{-5} +3 z a^{-7} +z a^{-9} + a^{-4} -3 a^{-6} -5 a^{-8} -2 a^{-10} - a^{-3} z^{-1} +2 a^{-7} z^{-1} + a^{-9} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



