L11n159

From Knot Atlas
Revision as of 12:21, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n158.gif

L11n158

L11n160.gif

L11n160

L11n159.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n159 at Knotilus!


Link Presentations

[edit Notes on L11n159's Link Presentations]

Planar diagram presentation X8192 X7,17,8,16 X10,4,11,3 X2,15,3,16 X14,10,15,9 X11,19,12,18 X5,13,6,12 X21,1,22,6 X20,14,21,13 X17,7,18,22 X4,20,5,19
Gauss code {1, -4, 3, -11, -7, 8}, {-2, -1, 5, -3, -6, 7, 9, -5, 4, 2, -10, 6, 11, -9, -8, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n159 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-1012345χ
16       2-2
14      110
12     22 0
10    211 2
8   13   2
6  221   1
4 12     1
2 1      -1
01       1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n158.gif

L11n158

L11n160.gif

L11n160