L10a108

From Knot Atlas
Revision as of 12:23, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10a107.gif

L10a107

L10a109.gif

L10a109

L10a108.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a108 at Knotilus!

Two interlinked trefoil knots (3_1).

An indefinitely extended pattern made up of mutually-interlinked trefoils (i.e. overlapping L10a108 links).
Symmetrical trefoils.
Simple square depiction.


Link Presentations

[edit Notes on L10a108's Link Presentations]

Planar diagram presentation X12,1,13,2 X16,7,17,8 X10,5,1,6 X6374 X4,9,5,10 X20,17,11,18 X18,13,19,14 X14,19,15,20 X2,11,3,12 X8,15,9,16
Gauss code {1, -9, 4, -5, 3, -4, 2, -10, 5, -3}, {9, -1, 7, -8, 10, -2, 6, -7, 8, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a108 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         31-2
-8        5  5
-10       53  -2
-12      95   4
-14     66    0
-16    78     -1
-18   46      2
-20  27       -5
-22 14        3
-24 2         -2
-261          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a107.gif

L10a107

L10a109.gif

L10a109