K11a227

From Knot Atlas
Revision as of 11:57, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a226.gif

K11a226

K11a228.gif

K11a228

K11a227.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a227 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X18,6,19,5 X22,8,1,7 X16,10,17,9 X2,12,3,11 X8,14,9,13 X20,16,21,15 X10,18,11,17 X6,20,7,19 X14,22,15,21
Gauss code 1, -6, 2, -1, 3, -10, 4, -7, 5, -9, 6, -2, 7, -11, 8, -5, 9, -3, 10, -8, 11, -4
Dowker-Thistlethwaite code 4 12 18 22 16 2 8 20 10 6 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a227 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for K11a227's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 143, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a227/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a227/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (8, 21)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of K11a227. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          3 3
25         61 -5
23        93  6
21       126   -6
19      119    2
17     1212     0
15    811      -3
13   612       6
11  38        -5
9  6         6
713          -2
51           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a226.gif

K11a226

K11a228.gif

K11a228