K11a28

From Knot Atlas
Jump to navigationJump to search

K11a27.gif

K11a27

K11a29.gif

K11a29

K11a28.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a28 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X12,6,13,5 X16,7,17,8 X2,9,3,10 X18,11,19,12 X20,14,21,13 X22,16,1,15 X10,17,11,18 X6,19,7,20 X14,22,15,21
Gauss code 1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -3, 7, -11, 8, -4, 9, -6, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 8 12 16 2 18 20 22 10 6 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a28 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a28/ThurstonBennequinNumber
Hyperbolic Volume 15.8799
A-Polynomial See Data:K11a28/A-polynomial

[edit Notes for K11a28's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a28's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 121, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_123,}

Same Jones Polynomial (up to mirroring, ): {K11a87, K11a96,}

Vassiliev invariants

V2 and V3: (-2, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a28. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         51 -4
5        83  5
3       95   -4
1      118    3
-1     910     1
-3    710      -3
-5   59       4
-7  27        -5
-9 15         4
-11 2          -2
-131           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a27.gif

K11a27

K11a29.gif

K11a29