K11n3

From Knot Atlas
Revision as of 12:03, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11n2.gif

K11n2

K11n4.gif

K11n4

K11n3.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n3 at Knotilus!


Knot K11n3.
A graph, knot K11n3.
A part of a knot and a part of a graph.

Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X7,15,8,14 X2,9,3,10 X11,16,12,17 X13,20,14,21 X15,7,16,6 X17,22,18,1 X19,12,20,13 X21,18,22,19
Gauss code 1, -5, 2, -1, 3, 8, -4, -2, 5, -3, -6, 10, -7, 4, -8, 6, -9, 11, -10, 7, -11, 9
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -20 -6 -22 -12 -18
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n3 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n3/ThurstonBennequinNumber
Hyperbolic Volume 11.5634
A-Polynomial See Data:K11n3/A-polynomial

[edit Notes for K11n3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11n3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n3/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n3/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_7, K11a59,}

Same Jones Polynomial (up to mirroring, ): {9_22,}

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11n3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        1 -1
3       31 2
1      31  -2
-1     43   1
-3    44    0
-5   33     0
-7  24      2
-9 13       -2
-11 2        2
-131         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n2.gif

K11n2

K11n4.gif

K11n4