K11a90

From Knot Atlas
Jump to navigationJump to search

K11a89.gif

K11a89

K11a91.gif

K11a91

K11a90.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a90 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X16,7,17,8 X18,9,19,10 X2,11,3,12 X22,14,1,13 X20,16,21,15 X8,17,9,18 X6,19,7,20 X14,22,15,21
Gauss code 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, -8, 11, -7
Dowker-Thistlethwaite code 4 10 12 16 18 2 22 20 8 6 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a90 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11a90's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 87, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a90/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a90/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a118,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a90. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
9           1-1
7          2 2
5         31 -2
3        62  4
1       53   -2
-1      86    2
-3     76     -1
-5    57      -2
-7   47       3
-9  25        -3
-11 14         3
-13 2          -2
-151           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a89.gif

K11a89

K11a91.gif

K11a91