L11a289

From Knot Atlas
Revision as of 12:05, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a288.gif

L11a288

L11a290.gif

L11a290

L11a289.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a289 at Knotilus!

Celtic or pseudo-Celtic linear decorative knot
Decorative variant with big loops at ends

(Also see Detecting a Link Using the Multivariable Alexander Polynomial.)

Link Presentations

[edit Notes on L11a289's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X22,12,9,11 X2,9,3,10 X20,14,21,13 X14,7,15,8 X18,16,19,15 X16,6,17,5 X6,18,7,17 X4,19,5,20 X8,22,1,21
Gauss code {1, -4, 2, -10, 8, -9, 6, -11}, {4, -1, 3, -2, 5, -6, 7, -8, 9, -7, 10, -5, 11, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a289 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         51 -4
12        73  4
10       95   -4
8      97    2
6     89     1
4    79      -2
2   510       5
0  25        -3
-2 15         4
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a288.gif

L11a288

L11a290.gif

L11a290