L8a17

From Knot Atlas
Jump to navigationJump to search

L8a16.gif

L8a16

L8a18.gif

L8a18

L8a17.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a17 at Knotilus!

L8a17 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^3_{2}} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a17's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X10,13,5,14 X8,15,9,16 X14,7,15,8 X16,9,11,10 X2536 X4,11,1,12
Gauss code {1, -7, 2, -8}, {7, -1, 5, -4, 6, -3}, {8, -2, 3, -5, 4, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L8a17 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} -2 q^{-9} +4 q^{-8} -4 q^{-7} +6 q^{-6} -4 q^{-5} +4 q^{-4} -2 q^{-3} + q^{-2} } (db)
Signature -4 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{10} z^{-2} +a^{10}-3 a^8 z^2-2 a^8 z^{-2} -6 a^8+2 a^6 z^4+6 a^6 z^2+a^6 z^{-2} +5 a^6+a^4 z^4+2 a^4 z^2} (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5       21-1
-7      2  2
-9     22  0
-11    42   2
-13   13    2
-15  33     0
-17 13      2
-19 1       -1
-211        1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-8}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-7}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a16.gif

L8a16

L8a18.gif

L8a18