L8a17
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a17 is [math]\displaystyle{ 8^3_{2} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a17's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X10,13,5,14 X8,15,9,16 X14,7,15,8 X16,9,11,10 X2536 X4,11,1,12 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 5, -4, 6, -3}, {8, -2, 3, -5, 4, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(3)^2 t(2)^2+t(1) t(3) t(2)^2-t(3) t(2)^2+t(1) t(3)^2 t(2)-t(3)^2 t(2)+t(1) t(2)-2 t(1) t(3) t(2)+2 t(3) t(2)-t(2)-t(1)+t(1) t(3)-t(3)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-10} -2 q^{-9} +4 q^{-8} -4 q^{-7} +6 q^{-6} -4 q^{-5} +4 q^{-4} -2 q^{-3} + q^{-2} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{10} z^{-2} +a^{10}-3 a^8 z^2-2 a^8 z^{-2} -6 a^8+2 a^6 z^4+6 a^6 z^2+a^6 z^{-2} +5 a^6+a^4 z^4+2 a^4 z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^4-2 a^{12} z^2+a^{12}+2 a^{11} z^5-3 a^{11} z^3+2 a^{10} z^6-2 a^{10} z^4+a^{10} z^2+a^{10} z^{-2} -3 a^{10}+a^9 z^7+2 a^9 z^5-6 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +5 a^8 z^6-12 a^8 z^4+15 a^8 z^2+2 a^8 z^{-2} -8 a^8+a^7 z^7+2 a^7 z^5-6 a^7 z^3+6 a^7 z-2 a^7 z^{-1} +3 a^6 z^6-8 a^6 z^4+10 a^6 z^2+a^6 z^{-2} -5 a^6+2 a^5 z^5-3 a^5 z^3+a^4 z^4-2 a^4 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



