K11a177

From Knot Atlas
Revision as of 16:13, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a176.gif

K11a176

K11a178.gif

K11a178

K11a177.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a177 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X14,5,15,6 X16,8,17,7 X18,10,19,9 X2,12,3,11 X22,13,1,14 X20,16,21,15 X8,18,9,17 X10,20,11,19 X6,21,7,22
Gauss code 1, -6, 2, -1, 3, -11, 4, -9, 5, -10, 6, -2, 7, -3, 8, -4, 9, -5, 10, -8, 11, -7
Dowker-Thistlethwaite code 4 12 14 16 18 2 22 20 8 10 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a177 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11a177's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 97, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a177. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
21           11
19          3 -3
17         41 3
15        73  -4
13       74   3
11      87    -1
9     77     0
7    58      3
5   47       -3
3  26        4
1 13         -2
-1 2          2
-31           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a176.gif

K11a176

K11a178.gif

K11a178