K11a214

From Knot Atlas
Revision as of 16:13, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a213.gif

K11a213

K11a215.gif

K11a215

K11a214.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a214 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X16,5,17,6 X22,8,1,7 X20,10,21,9 X18,12,19,11 X2,13,3,14 X6,15,7,16 X14,18,15,17 X10,20,11,19 X8,22,9,21
Gauss code 1, -7, 2, -1, 3, -8, 4, -11, 5, -10, 6, -2, 7, -9, 8, -3, 9, -6, 10, -5, 11, -4
Dowker-Thistlethwaite code 4 12 16 22 20 18 2 6 14 10 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a214 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a214/ThurstonBennequinNumber
Hyperbolic Volume 11.7947
A-Polynomial See Data:K11a214/A-polynomial

[edit Notes for K11a214's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a214's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 69, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a214/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a214/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-5, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a214. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
15           1-1
13          2 2
11         21 -1
9        52  3
7       42   -2
5      65    1
3     54     -1
1    46      -2
-1   46       2
-3  13        -2
-5 14         3
-7 1          -1
-91           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a213.gif

K11a213

K11a215.gif

K11a215