K11a222

From Knot Atlas
Revision as of 16:15, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a221.gif

K11a221

K11a223.gif

K11a223

K11a222.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a222 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X18,5,19,6 X20,7,21,8 X14,10,15,9 X16,12,17,11 X2,13,3,14 X10,16,11,15 X22,17,1,18 X8,19,9,20 X6,21,7,22
Gauss code 1, -7, 2, -1, 3, -11, 4, -10, 5, -8, 6, -2, 7, -5, 8, -6, 9, -3, 10, -4, 11, -9
Dowker-Thistlethwaite code 4 12 18 20 14 16 2 10 22 8 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a222 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a222's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 101, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a222/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a222/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a204,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a222. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
9           11
7          3 -3
5         51 4
3        73  -4
1       85   3
-1      98    -1
-3     77     0
-5    59      4
-7   47       -3
-9  15        4
-11 14         -3
-13 1          1
-151           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a221.gif

K11a221

K11a223.gif

K11a223