K11a364

From Knot Atlas
Revision as of 16:15, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a363.gif

K11a363

K11a365.gif

K11a365

K11a364.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a364 at Knotilus!



Knot presentations

Planar diagram presentation X10,2,11,1 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X4,16,5,15 X6,18,7,17 X8,20,9,19 X12,22,13,21
Gauss code 1, -7, 2, -8, 3, -9, 4, -10, 5, -1, 6, -11, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6
Dowker-Thistlethwaite code 10 14 16 18 20 22 2 4 6 8 12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a364 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -8

[edit Notes for K11a364's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a364/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (14, 50)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of K11a364. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
31           1-1
29            0
27         21 -1
25        1   1
23       22   0
21      11    0
19     22     0
17    11      0
15   12       1
13  11        0
11  1         1
911          0
71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a363.gif

K11a363

K11a365.gif

K11a365