K11n38

From Knot Atlas
Revision as of 16:20, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n37.gif

K11n37

K11n39.gif

K11n39

K11n38.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n38 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,12,6,13 X2837 X9,19,10,18 X11,6,12,7 X13,22,14,1 X15,20,16,21 X17,11,18,10 X19,16,20,17 X21,14,22,15
Gauss code 1, -4, 2, -1, -3, 6, 4, -2, -5, 9, -6, 3, -7, 11, -8, 10, -9, 5, -10, 8, -11, 7
Dowker-Thistlethwaite code 4 8 -12 2 -18 -6 -22 -20 -10 -16 -14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n38 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n38's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n38/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n38/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n102,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n38. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
5        11
3      1  1
1      11 0
-1    121  0
-3   1     -1
-5   11    0
-7 11      0
-9         0
-111        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n37.gif

K11n37

K11n39.gif

K11n39