K11a272

From Knot Atlas
Revision as of 17:23, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a271.gif

K11a271

K11a273.gif

K11a273

K11a272.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a272 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,3,11,4 X12,6,13,5 X22,8,1,7 X18,10,19,9 X16,11,17,12 X20,13,21,14 X4,16,5,15 X2,17,3,18 X14,19,15,20 X8,22,9,21
Gauss code 1, -9, 2, -8, 3, -1, 4, -11, 5, -2, 6, -3, 7, -10, 8, -6, 9, -5, 10, -7, 11, -4
Dowker-Thistlethwaite code 6 10 12 22 18 16 20 4 2 14 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a272 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a272's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 149, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a272/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a272/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a30,}

Same Jones Polynomial (up to mirroring, ): {K11a30, K11a189,}

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a272. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         61 5
7        93  -6
5       126   6
3      129    -3
1     1212     0
-1    1013      3
-3   611       -5
-5  310        7
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a271.gif

K11a271

K11a273.gif

K11a273