L11n160

From Knot Atlas
Revision as of 17:50, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n159.gif

L11n159

L11n161.gif

L11n161

L11n160.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n160 at Knotilus!


Link Presentations

[edit Notes on L11n160's Link Presentations]

Planar diagram presentation X8192 X16,7,17,8 X10,4,11,3 X2,15,3,16 X14,10,15,9 X11,19,12,18 X5,13,6,12 X6,21,1,22 X20,14,21,13 X22,17,7,18 X19,4,20,5
Gauss code {1, -4, 3, 11, -7, -8}, {2, -1, 5, -3, -6, 7, 9, -5, 4, -2, 10, 6, -11, -9, 8, -10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n160 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       31 -2
4      42  2
2     43   -1
0    54    1
-2   35     2
-4  34      -1
-6 14       3
-8 2        -2
-101         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n159.gif

L11n159

L11n161.gif

L11n161