10 60
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 60's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss code | 1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 14 2 16 18 6 20 12 |
Conway Notation | [211,211,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{2, 13}, {1, 10}, {12, 6}, {13, 11}, {9, 3}, {10, 8}, {7, 9}, {8, 12}, {5, 2}, {6, 4}, {3, 5}, {4, 7}, {11, 1}] |
[edit Notes on presentations of 10 60]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 16 18 6 20 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,211,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 13}, {1, 10}, {12, 6}, {13, 11}, {9, 3}, {10, 8}, {7, 9}, {8, 12}, {5, 2}, {6, 4}, {3, 5}, {4, 7}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 85, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{94}-2 q^{92}+6 q^{90}-10 q^{88}+12 q^{86}-11 q^{84}+22 q^{80}-45 q^{78}+69 q^{76}-72 q^{74}+47 q^{72}+7 q^{70}-83 q^{68}+155 q^{66}-189 q^{64}+162 q^{62}-75 q^{60}-59 q^{58}+184 q^{56}-259 q^{54}+248 q^{52}-149 q^{50}-2 q^{48}+141 q^{46}-220 q^{44}+196 q^{42}-90 q^{40}-48 q^{38}+160 q^{36}-186 q^{34}+112 q^{32}+35 q^{30}-189 q^{28}+289 q^{26}-278 q^{24}+162 q^{22}+33 q^{20}-231 q^{18}+361 q^{16}-373 q^{14}+267 q^{12}-75 q^{10}-130 q^8+270 q^6-303 q^4+226 q^2-75-81 q^{-2} +172 q^{-4} -168 q^{-6} +73 q^{-8} +61 q^{-10} -170 q^{-12} +207 q^{-14} -146 q^{-16} +18 q^{-18} +122 q^{-20} -225 q^{-22} +252 q^{-24} -194 q^{-26} +83 q^{-28} +41 q^{-30} -136 q^{-32} +177 q^{-34} -161 q^{-36} +108 q^{-38} -38 q^{-40} -20 q^{-42} +53 q^{-44} -68 q^{-46} +57 q^{-48} -35 q^{-50} +17 q^{-52} + q^{-54} -8 q^{-56} +10 q^{-58} -10 q^{-60} +6 q^{-62} -3 q^{-64} + q^{-66} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{38}-2 q^{36}-2 q^{34}+8 q^{32}-4 q^{30}-12 q^{28}+20 q^{26}+q^{24}-30 q^{22}+24 q^{20}+16 q^{18}-38 q^{16}+12 q^{14}+26 q^{12}-25 q^{10}-7 q^8+20 q^6+2 q^4-20 q^2+3+29 q^{-2} -23 q^{-4} -17 q^{-6} +39 q^{-8} -13 q^{-10} -24 q^{-12} +28 q^{-14} -2 q^{-16} -15 q^{-18} +9 q^{-20} + q^{-22} -3 q^{-24} + q^{-26} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{75}-2 q^{73}-2 q^{71}+3 q^{69}+8 q^{67}-4 q^{65}-19 q^{63}+2 q^{61}+35 q^{59}+10 q^{57}-56 q^{55}-36 q^{53}+74 q^{51}+77 q^{49}-79 q^{47}-130 q^{45}+61 q^{43}+187 q^{41}-22 q^{39}-224 q^{37}-39 q^{35}+239 q^{33}+105 q^{31}-228 q^{29}-159 q^{27}+186 q^{25}+200 q^{23}-132 q^{21}-216 q^{19}+68 q^{17}+212 q^{15}-3 q^{13}-185 q^{11}-66 q^9+151 q^7+127 q^5-96 q^3-183 q+32 q^{-1} +223 q^{-3} +37 q^{-5} -239 q^{-7} -105 q^{-9} +230 q^{-11} +154 q^{-13} -187 q^{-15} -181 q^{-17} +136 q^{-19} +177 q^{-21} -80 q^{-23} -150 q^{-25} +38 q^{-27} +105 q^{-29} -8 q^{-31} -68 q^{-33} -3 q^{-35} +38 q^{-37} +2 q^{-39} -14 q^{-41} -3 q^{-43} +6 q^{-45} + q^{-47} -3 q^{-49} + q^{-51} } |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n165,}
Same Jones Polynomial (up to mirroring, ): {10_86,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n165,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_86,} |
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 60. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|