K11a20

From Knot Atlas
Revision as of 01:58, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a19.gif

K11a19

K11a21.gif

K11a21

K11a20.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a20 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X2837 X18,9,19,10 X6,12,7,11 X20,14,21,13 X22,16,1,15 X10,17,11,18 X16,20,17,19 X14,22,15,21
Gauss code 1, -4, 2, -1, 3, -6, 4, -2, 5, -9, 6, -3, 7, -11, 8, -10, 9, -5, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 8 12 2 18 6 20 22 10 16 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a20 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a20/ThurstonBennequinNumber
Hyperbolic Volume 15.3455
A-Polynomial See Data:K11a20/A-polynomial

[edit Notes for K11a20's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a20's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+13 t^2-25 t+31-25 t^{-1} +13 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-5 z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 113, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+4 q^{10}-8 q^9+13 q^8-17 q^7+18 q^6-18 q^5+15 q^4-10 q^3+6 q^2-2 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -2 z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +3 z^2 a^{-2} -9 z^2 a^{-6} +7 z^2 a^{-8} -z^2 a^{-10} +2 a^{-2} + a^{-4} -5 a^{-6} +4 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-6} +z^{10} a^{-8} +3 z^9 a^{-5} +7 z^9 a^{-7} +4 z^9 a^{-9} +3 z^8 a^{-4} +8 z^8 a^{-6} +12 z^8 a^{-8} +7 z^8 a^{-10} +2 z^7 a^{-3} -4 z^7 a^{-5} -8 z^7 a^{-7} +5 z^7 a^{-9} +7 z^7 a^{-11} +z^6 a^{-2} -6 z^6 a^{-4} -26 z^6 a^{-6} -30 z^6 a^{-8} -7 z^6 a^{-10} +4 z^6 a^{-12} -5 z^5 a^{-3} +z^5 a^{-5} -5 z^5 a^{-7} -23 z^5 a^{-9} -11 z^5 a^{-11} +z^5 a^{-13} -4 z^4 a^{-2} +3 z^4 a^{-4} +34 z^4 a^{-6} +30 z^4 a^{-8} -3 z^4 a^{-10} -6 z^4 a^{-12} +2 z^3 a^{-3} +14 z^3 a^{-7} +22 z^3 a^{-9} +5 z^3 a^{-11} -z^3 a^{-13} +5 z^2 a^{-2} -2 z^2 a^{-4} -22 z^2 a^{-6} -15 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2 a^{-12} +z a^{-3} -z a^{-5} -7 z a^{-7} -7 z a^{-9} -2 z a^{-11} -2 a^{-2} + a^{-4} +5 a^{-6} +4 a^{-8} + a^{-10} }[/math]
The A2 invariant Data:K11a20/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a20/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{976}{3} }[/math] [math]\displaystyle{ \frac{352}{3} }[/math] [math]\displaystyle{ 152 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 1184 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{2264}{3} }[/math] [math]\displaystyle{ \frac{416}{3} }[/math] [math]\displaystyle{ 16 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          3 3
19         51 -4
17        83  5
15       95   -4
13      98    1
11     99     0
9    69      -3
7   49       5
5  26        -4
3 15         4
1 1          -1
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a19.gif

K11a19

K11a21.gif

K11a21