L8a17

From Knot Atlas
Revision as of 02:54, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L8a16.gif

L8a16

L8a18.gif

L8a18

L8a17.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a17 at Knotilus!

L8a17 is [math]\displaystyle{ 8^3_{2} }[/math] in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a17's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X10,13,5,14 X8,15,9,16 X14,7,15,8 X16,9,11,10 X2536 X4,11,1,12
Gauss code {1, -7, 2, -8}, {7, -1, 5, -4, 6, -3}, {8, -2, 3, -5, 4, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L8a17 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{t(3)^2 t(2)^2+t(1) t(3) t(2)^2-t(3) t(2)^2+t(1) t(3)^2 t(2)-t(3)^2 t(2)+t(1) t(2)-2 t(1) t(3) t(2)+2 t(3) t(2)-t(2)-t(1)+t(1) t(3)-t(3)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{-10} -2 q^{-9} +4 q^{-8} -4 q^{-7} +6 q^{-6} -4 q^{-5} +4 q^{-4} -2 q^{-3} + q^{-2} }[/math] (db)
Signature -4 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^{10} z^{-2} +a^{10}-3 a^8 z^2-2 a^8 z^{-2} -6 a^8+2 a^6 z^4+6 a^6 z^2+a^6 z^{-2} +5 a^6+a^4 z^4+2 a^4 z^2 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{12} z^4-2 a^{12} z^2+a^{12}+2 a^{11} z^5-3 a^{11} z^3+2 a^{10} z^6-2 a^{10} z^4+a^{10} z^2+a^{10} z^{-2} -3 a^{10}+a^9 z^7+2 a^9 z^5-6 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +5 a^8 z^6-12 a^8 z^4+15 a^8 z^2+2 a^8 z^{-2} -8 a^8+a^7 z^7+2 a^7 z^5-6 a^7 z^3+6 a^7 z-2 a^7 z^{-1} +3 a^6 z^6-8 a^6 z^4+10 a^6 z^2+a^6 z^{-2} -5 a^6+2 a^5 z^5-3 a^5 z^3+a^4 z^4-2 a^4 z^2 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5       21-1
-7      2  2
-9     22  0
-11    42   2
-13   13    2
-15  33     0
-17 13      2
-19 1       -1
-211        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a16.gif

L8a16

L8a18.gif

L8a18