L8a18

From Knot Atlas
Revision as of 02:42, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L8a17.gif

L8a17

L8a19.gif

L8a19

L8a18.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a18 at Knotilus!

L8a18 is [math]\displaystyle{ 8^3_{1} }[/math] in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a18's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X8,16,9,15 X14,8,15,7 X16,10,11,9 X10,12,5,11 X2536 X4,14,1,13
Gauss code {1, -7, 2, -8}, {7, -1, 4, -3, 5, -6}, {6, -2, 8, -4, 3, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L8a18 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{u v^2 w^2-u v w^2+u v w-u w+u-v^2 w^2+v^2 w-v w+v-1}{\sqrt{u} v w} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^8-2 q^7+3 q^6-3 q^5+4 q^4-2 q^3+3 q^2-q+1 }[/math] (db)
Signature 4 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^4 a^{-6} +3 z^2 a^{-6} + a^{-6} z^{-2} +2 a^{-6} -z^6 a^{-4} -5 z^4 a^{-4} -8 z^2 a^{-4} -2 a^{-4} z^{-2} -6 a^{-4} +z^4 a^{-2} +4 z^2 a^{-2} + a^{-2} z^{-2} +4 a^{-2} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^2 a^{-10} +2 z^3 a^{-9} +3 z^4 a^{-8} -3 z^2 a^{-8} + a^{-8} +3 z^5 a^{-7} -4 z^3 a^{-7} +3 z^6 a^{-6} -8 z^4 a^{-6} +6 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +z^7 a^{-5} -7 z^3 a^{-5} +6 z a^{-5} -2 a^{-5} z^{-1} +4 z^6 a^{-4} -16 z^4 a^{-4} +18 z^2 a^{-4} +2 a^{-4} z^{-2} -8 a^{-4} +z^7 a^{-3} -3 z^5 a^{-3} -z^3 a^{-3} +6 z a^{-3} -2 a^{-3} z^{-1} +z^6 a^{-2} -5 z^4 a^{-2} +8 z^2 a^{-2} + a^{-2} z^{-2} -5 a^{-2} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-2-10123456χ
17        11
15       21-1
13      1  1
11     22  0
9    21   1
7   13    2
5  21     1
3 13      2
1         0
-11        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a17.gif

L8a17

L8a19.gif

L8a19