L8a20

From Knot Atlas
Revision as of 02:52, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L8a19.gif

L8a19

L8a21.gif

L8a21

L8a20.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a20 at Knotilus!

L8a20 is [math]\displaystyle{ 8^3_{4} }[/math] in the Rolfsen table of links.

Depiction obtained with knotilus

Link Presentations

[edit Notes on L8a20's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,12,13,11 X14,8,15,7 X8,14,9,13 X12,16,5,15 X2536 X4,9,1,10
Gauss code {1, -7, 2, -8}, {5, -4, 6, -3}, {7, -1, 4, -5, 8, -2, 3, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L8a20 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(w-1) \left(u v w-u v-2 u w-2 v w-w^2+w\right)}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^4-2 q^3+5 q^2-5 q+6-5 q^{-1} +5 q^{-2} -2 q^{-3} + q^{-4} }[/math] (db)
Signature 0 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^4+ a^{-4} -2 a^2 z^2+a^2 z^{-2} -2 z^2 a^{-2} + a^{-2} z^{-2} +z^4-2 z^{-2} -2 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^4 z^4+z^4 a^{-4} -2 a^4 z^2-2 z^2 a^{-4} +a^4+ a^{-4} +2 a^3 z^5+2 z^5 a^{-3} -2 a^3 z^3-2 z^3 a^{-3} +3 a^2 z^6+3 z^6 a^{-2} -5 a^2 z^4-5 z^4 a^{-2} +5 a^2 z^2+5 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^2-4 a^{-2} +a z^7+z^7 a^{-1} +5 a z^5+5 z^5 a^{-1} -12 a z^3-12 z^3 a^{-1} +8 a z+8 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +6 z^6-12 z^4+14 z^2+2 z^{-2} -9 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-101234χ
9        11
7       21-1
5      3  3
3     22  0
1    43   1
-1   34    1
-3  22     0
-5  3      3
-712       -1
-91        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a19.gif

L8a19

L8a21.gif

L8a21