L9a22
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a22 is [math]\displaystyle{ 9^2_{35} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a22's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,12,17,11 X12,6,13,5 X4,17,5,18 X14,7,15,8 X18,13,7,14 X6,16,1,15 |
| Gauss code | {1, -2, 3, -6, 5, -9}, {7, -1, 2, -3, 4, -5, 8, -7, 9, -4, 6, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^4-2 u^2 v^3+2 u^2 v^2-u^2 v-u v^4+3 u v^3-3 u v^2+3 u v-u-v^3+2 v^2-2 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{8}{q^{7/2}}+\frac{7}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^7+a^5 z^5-5 a^3 z^5+a z^5+3 a^5 z^3-8 a^3 z^3+3 a z^3+2 a^5 z-4 a^3 z+a z+a^3 z^{-1} -a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^3 a^9-3 z^4 a^8+z^2 a^8-5 z^5 a^7+4 z^3 a^7-z a^7-6 z^6 a^6+8 z^4 a^6-3 z^2 a^6-5 z^7 a^5+8 z^5 a^5-3 z^3 a^5+z a^5-2 z^8 a^4-2 z^6 a^4+13 z^4 a^4-7 z^2 a^4-8 z^7 a^3+24 z^5 a^3-19 z^3 a^3+4 z a^3+a^3 z^{-1} -2 z^8 a^2+3 z^6 a^2+5 z^4 a^2-5 z^2 a^2-a^2-3 z^7 a+11 z^5 a-11 z^3 a+2 z a+a z^{-1} -z^6+3 z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



