L9a23
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a23 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{22}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a23's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X18,16,7,15 X14,5,15,6 X4,13,5,14 X12,18,13,17 X16,12,17,11 X2738 X6,9,1,10 |
| Gauss code | {1, -8, 2, -5, 4, -9}, {8, -1, 9, -2, 7, -6, 5, -4, 3, -7, 6, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(2)^4+t(1)^2 t(2)^3-3 t(1) t(2)^3+2 t(2)^3-2 t(1)^2 t(2)^2+5 t(1) t(2)^2-2 t(2)^2+2 t(1)^2 t(2)-3 t(1) t(2)+t(2)+t(1)}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{5/2}-3 q^{3/2}+5 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{8}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^3+2 a^5 z+2 a^5 z^{-1} -a^3 z^5-3 a^3 z^3-5 a^3 z-3 a^3 z^{-1} -a z^5-2 a z^3+z^3 a^{-1} -a z+a z^{-1} +z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^8-a^2 z^8-3 a^5 z^7-6 a^3 z^7-3 a z^7-2 a^6 z^6-4 a^4 z^6-6 a^2 z^6-4 z^6-a^7 z^5+8 a^5 z^5+13 a^3 z^5+a z^5-3 z^5 a^{-1} +4 a^6 z^4+13 a^4 z^4+15 a^2 z^4-z^4 a^{-2} +5 z^4+3 a^7 z^3-10 a^5 z^3-15 a^3 z^3+2 a z^3+4 z^3 a^{-1} -a^6 z^2-11 a^4 z^2-13 a^2 z^2+z^2 a^{-2} -2 z^2-2 a^7 z+8 a^5 z+11 a^3 z-z a^{-1} +3 a^4+3 a^2+1-2 a^5 z^{-1} -3 a^3 z^{-1} -a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



