L10a149
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a149's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X16,6,17,5 X8493 X20,18,15,17 X10,20,11,19 X18,10,19,9 X14,16,5,15 X2,12,3,11 |
| Gauss code | {1, -10, 5, -3}, {9, -4, 6, -8, 7, -6}, {4, -1, 2, -5, 8, -7, 10, -2, 3, -9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(3)-1)^2 (2 t(3) t(2)-t(2)-t(3)+2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+5 q^7-9 q^6+13 q^5-15 q^4+17 q^3-14 q^2+12 q-6+3 q^{-1} - q^{-2} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} + a^{-6} z^{-2} +2 a^{-6} +z^6 a^{-4} +z^4 a^{-4} -4 z^2 a^{-4} -2 a^{-4} z^{-2} -7 a^{-4} +z^6 a^{-2} +3 z^4 a^{-2} +6 z^2 a^{-2} + a^{-2} z^{-2} +6 a^{-2} -z^4-2 z^2-1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} +5 z^6 a^{-8} -6 z^4 a^{-8} + a^{-8} +9 z^7 a^{-7} -15 z^5 a^{-7} +4 z^3 a^{-7} +7 z^8 a^{-6} -5 z^6 a^{-6} -8 z^4 a^{-6} +5 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +2 z^9 a^{-5} +13 z^7 a^{-5} -28 z^5 a^{-5} +9 z^3 a^{-5} +5 z a^{-5} -2 a^{-5} z^{-1} +11 z^8 a^{-4} -12 z^6 a^{-4} -9 z^4 a^{-4} +18 z^2 a^{-4} +2 a^{-4} z^{-2} -10 a^{-4} +2 z^9 a^{-3} +8 z^7 a^{-3} -16 z^5 a^{-3} +4 z^3 a^{-3} +7 z a^{-3} -2 a^{-3} z^{-1} +4 z^8 a^{-2} +z^6 a^{-2} -13 z^4 a^{-2} +18 z^2 a^{-2} + a^{-2} z^{-2} -9 a^{-2} +4 z^7 a^{-1} +a z^5-3 z^5 a^{-1} -2 a z^3-3 z^3 a^{-1} +a z+3 z a^{-1} +3 z^6-6 z^4+5 z^2-2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



