L11n282
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n282's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X18,10,19,9 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X10,20,5,19 |
| Gauss code | {1, -4, 3, -10}, {-2, -1, 5, -3, 6, -11}, {-8, 2, 4, -5, 10, 9, -7, -6, 11, 8, -9, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3)^2-t(3)+1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^6+4 q^5-7 q^4+9 q^3-7 q^2- q^{-2} +9 q+4 q^{-1} -5 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +3 z^4 a^{-2} -z^4 a^{-4} -z^4+z^2 a^{-2} -z^2-5 a^{-2} +4 a^{-4} - a^{-6} +2-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-2} +z^8 a^{-4} +4 z^7 a^{-1} +6 z^7 a^{-3} +2 z^7 a^{-5} +8 z^6 a^{-2} +5 z^6 a^{-4} +z^6 a^{-6} +4 z^6+a z^5-6 z^5 a^{-1} -8 z^5 a^{-3} -z^5 a^{-5} -20 z^4 a^{-2} -9 z^4 a^{-4} +2 z^4 a^{-6} -9 z^4-a z^3+5 z^3 a^{-3} +7 z^3 a^{-5} +3 z^3 a^{-7} +7 z^2 a^{-2} +3 z^2 a^{-4} +4 z^2-5 z a^{-1} -12 z a^{-3} -10 z a^{-5} -3 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



