L11n135
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n135's Link Presentations]
| Planar diagram presentation | X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X16,10,17,9 X20,14,21,13 X22,16,7,15 X4,20,5,19 X14,22,15,21 |
| Gauss code | {1, 4, -3, -10, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -11, 9, -7, -4, 2, 10, -8, 11, -9} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-t(1)^2 t(2)^3+t(1) t(2)^3-t(2)^3+t(1)^2 t(2)^2-t(1) t(2)^2+t(2)^2-t(1)^2 t(2)+t(1) t(2)-t(2)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -3 q^{9/2}+3 q^{7/2}-4 q^{5/2}+3 q^{3/2}-\frac{1}{q^{3/2}}+q^{15/2}-q^{13/2}+2 q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-5} +5 z^3 a^{-5} +7 z a^{-5} +2 a^{-5} z^{-1} -z^7 a^{-3} -7 z^5 a^{-3} -17 z^3 a^{-3} -16 z a^{-3} -5 a^{-3} z^{-1} +z^5 a^{-1} +5 z^3 a^{-1} +8 z a^{-1} +3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^9 a^{-3} -z^9 a^{-5} -z^8 a^{-2} -2 z^8 a^{-4} -z^8 a^{-6} +7 z^7 a^{-3} +6 z^7 a^{-5} -z^7 a^{-7} +6 z^6 a^{-2} +11 z^6 a^{-4} +4 z^6 a^{-6} -z^6 a^{-8} -2 z^5 a^{-1} -21 z^5 a^{-3} -15 z^5 a^{-5} +4 z^5 a^{-7} -15 z^4 a^{-2} -23 z^4 a^{-4} -4 z^4 a^{-6} +5 z^4 a^{-8} -z^4-a z^3+6 z^3 a^{-1} +29 z^3 a^{-3} +19 z^3 a^{-5} -3 z^3 a^{-7} +13 z^2 a^{-2} +20 z^2 a^{-4} +2 z^2 a^{-6} -6 z^2 a^{-8} +z^2+2 a z-9 z a^{-1} -20 z a^{-3} -9 z a^{-5} -5 a^{-2} -5 a^{-4} + a^{-8} +3 a^{-1} z^{-1} +5 a^{-3} z^{-1} +2 a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



