L10a99
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a99's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X18,14,19,13 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X8,20,1,19 |
| Gauss code | {1, -4, 2, -9, 7, -8, 6, -10}, {4, -1, 3, -2, 5, -6, 8, -7, 9, -5, 10, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^2 t(1)^3-2 t(2) t(1)^3+t(1)^3+t(2)^3 t(1)^2-3 t(2)^2 t(1)^2+3 t(2) t(1)^2-2 t(1)^2-2 t(2)^3 t(1)+3 t(2)^2 t(1)-3 t(2) t(1)+t(1)+t(2)^3-2 t(2)^2+t(2)}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{9/2}+3 q^{7/2}-5 q^{5/2}+7 q^{3/2}-8 \sqrt{q}+\frac{8}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z+a^5 z^{-1} -2 a^3 z^3-z^3 a^{-3} -4 a^3 z-a^3 z^{-1} -z a^{-3} +a z^5+z^5 a^{-1} +2 a z^3+2 z^3 a^{-1} +a z+z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^5 z^7-5 a^5 z^5+8 a^5 z^3+z^3 a^{-5} -5 a^5 z+a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+11 a^4 z^4+3 z^4 a^{-4} -2 a^4 z^2-z^2 a^{-4} -a^4+a^3 z^9-13 a^3 z^5+5 z^5 a^{-3} +21 a^3 z^3-4 z^3 a^{-3} -9 a^3 z+z a^{-3} +a^3 z^{-1} +5 a^2 z^8-17 a^2 z^6+6 z^6 a^{-2} +14 a^2 z^4-8 z^4 a^{-2} -2 a^2 z^2+3 z^2 a^{-2} +a z^9+4 a z^7+5 z^7 a^{-1} -20 a z^5-7 z^5 a^{-1} +19 a z^3+z^3 a^{-1} -6 a z-z a^{-1} +3 z^8-2 z^6-8 z^4+4 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



