# L10a99

 (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L10a99 at Knotilus!

 Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X18,14,19,13 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X8,20,1,19 Gauss code {1, -4, 2, -9, 7, -8, 6, -10}, {4, -1, 3, -2, 5, -6, 8, -7, 9, -5, 10, -3}
A Braid Representative
A Morse Link Presentation

### Polynomial invariants

 Multivariable Alexander Polynomial (in ${\displaystyle u}$, ${\displaystyle v}$, ${\displaystyle w}$, ...) ${\displaystyle {\frac {t(2)^{2}t(1)^{3}-2t(2)t(1)^{3}+t(1)^{3}+t(2)^{3}t(1)^{2}-3t(2)^{2}t(1)^{2}+3t(2)t(1)^{2}-2t(1)^{2}-2t(2)^{3}t(1)+3t(2)^{2}t(1)-3t(2)t(1)+t(1)+t(2)^{3}-2t(2)^{2}+t(2)}{t(1)^{3/2}t(2)^{3/2}}}}$ (db) Jones polynomial ${\displaystyle -q^{9/2}+3q^{7/2}-5q^{5/2}+7q^{3/2}-8{\sqrt {q}}+{\frac {8}{\sqrt {q}}}-{\frac {8}{q^{3/2}}}+{\frac {5}{q^{5/2}}}-{\frac {4}{q^{7/2}}}+{\frac {2}{q^{9/2}}}-{\frac {1}{q^{11/2}}}}$ (db) Signature 1 (db) HOMFLY-PT polynomial ${\displaystyle a^{5}z+a^{5}z^{-1}-2a^{3}z^{3}-z^{3}a^{-3}-4a^{3}z-a^{3}z^{-1}-za^{-3}+az^{5}+z^{5}a^{-1}+2az^{3}+2z^{3}a^{-1}+az+za^{-1}}$ (db) Kauffman polynomial ${\displaystyle a^{5}z^{7}-5a^{5}z^{5}+8a^{5}z^{3}+z^{3}a^{-5}-5a^{5}z+a^{5}z^{-1}+2a^{4}z^{8}-9a^{4}z^{6}+11a^{4}z^{4}+3z^{4}a^{-4}-2a^{4}z^{2}-z^{2}a^{-4}-a^{4}+a^{3}z^{9}-13a^{3}z^{5}+5z^{5}a^{-3}+21a^{3}z^{3}-4z^{3}a^{-3}-9a^{3}z+za^{-3}+a^{3}z^{-1}+5a^{2}z^{8}-17a^{2}z^{6}+6z^{6}a^{-2}+14a^{2}z^{4}-8z^{4}a^{-2}-2a^{2}z^{2}+3z^{2}a^{-2}+az^{9}+4az^{7}+5z^{7}a^{-1}-20az^{5}-7z^{5}a^{-1}+19az^{3}+z^{3}a^{-1}-6az-za^{-1}+3z^{8}-2z^{6}-8z^{4}+4z^{2}}$ (db)

### Khovanov Homology

The coefficients of the monomials ${\displaystyle t^{r}q^{j}}$ are shown, along with their alternating sums ${\displaystyle \chi }$ (fixed ${\displaystyle j}$, alternation over ${\displaystyle r}$).
 \ r \ j \
-6-5-4-3-2-101234χ
10          11
8         2 -2
6        31 2
4       42  -2
2      43   1
0     55    0
-2    33     0
-4   25      3
-6  23       -1
-8 13        2
-10 1         -1
-121          1
Integral Khovanov Homology
 ${\displaystyle \dim {\mathcal {G}}_{2r+i}\operatorname {KH} _{\mathbb {Z} }^{r}}$ ${\displaystyle i=0}$ ${\displaystyle i=2}$ ${\displaystyle r=-6}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-5}$ ${\displaystyle {\mathbb {Z} }\oplus {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-4}$ ${\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }^{2}}$ ${\displaystyle r=-3}$ ${\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{2}}$ ${\displaystyle {\mathbb {Z} }^{2}}$ ${\displaystyle r=-2}$ ${\displaystyle {\mathbb {Z} }^{5}\oplus {\mathbb {Z} }_{2}^{3}}$ ${\displaystyle {\mathbb {Z} }^{3}}$ ${\displaystyle r=-1}$ ${\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{5}}$ ${\displaystyle {\mathbb {Z} }^{5}}$ ${\displaystyle r=0}$ ${\displaystyle {\mathbb {Z} }^{5}\oplus {\mathbb {Z} }_{2}^{3}}$ ${\displaystyle {\mathbb {Z} }^{4}}$ ${\displaystyle r=1}$ ${\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{4}}$ ${\displaystyle {\mathbb {Z} }^{4}}$ ${\displaystyle r=2}$ ${\displaystyle {\mathbb {Z} }^{2}\oplus {\mathbb {Z} }_{2}^{3}}$ ${\displaystyle {\mathbb {Z} }^{3}}$ ${\displaystyle r=3}$ ${\displaystyle {\mathbb {Z} }\oplus {\mathbb {Z} }_{2}^{2}}$ ${\displaystyle {\mathbb {Z} }^{2}}$ ${\displaystyle r=4}$ ${\displaystyle {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.