L11n161
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n161's Link Presentations]
| Planar diagram presentation | X8192 X16,7,17,8 X10,4,11,3 X2,15,3,16 X14,10,15,9 X18,11,19,12 X5,13,6,12 X6,21,1,22 X13,20,14,21 X22,17,7,18 X19,4,20,5 |
| Gauss code | {1, -4, 3, 11, -7, -8}, {2, -1, 5, -3, 6, 7, -9, -5, 4, -2, 10, -6, -11, 9, 8, -10} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(2)^2 t(1)^2-3 t(2) t(1)^2+t(1)^2-2 t(2)^2 t(1)+5 t(2) t(1)-2 t(1)+t(2)^2-3 t(2)+2}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{7}{q^{9/2}}+\frac{6}{q^{7/2}}-\frac{7}{q^{5/2}}+\frac{4}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{3}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{6}{q^{11/2}}+\sqrt{q}-\frac{3}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 z^3+a^7 z-a^7 z^{-1} -a^5 z^5-2 a^5 z^3+a^5 z+3 a^5 z^{-1} -a^3 z^5-3 a^3 z^3-4 a^3 z-2 a^3 z^{-1} +a z^3+a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-4 a^9 z^5+4 a^9 z^3-a^9 z+3 a^8 z^8-14 a^8 z^6+18 a^8 z^4-6 a^8 z^2-a^8+2 a^7 z^9-6 a^7 z^7-a^7 z^5+7 a^7 z^3-2 a^7 z+a^7 z^{-1} +7 a^6 z^8-30 a^6 z^6+34 a^6 z^4-9 a^6 z^2-3 a^6+2 a^5 z^9-4 a^5 z^7-6 a^5 z^5+10 a^5 z^3-5 a^5 z+3 a^5 z^{-1} +4 a^4 z^8-15 a^4 z^6+16 a^4 z^4-4 a^4 z^2-3 a^4+3 a^3 z^7-9 a^3 z^5+10 a^3 z^3-6 a^3 z+2 a^3 z^{-1} +a^2 z^6+3 a z^3-2 a z+z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



