L11n162
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n162's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X17,13,18,12 X14,5,15,6 X4,13,5,14 X11,19,12,18 X19,7,20,22 X15,21,16,20 X21,17,22,16 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, -6, 3, 5, -4, -8, 9, -3, 6, -7, 8, -9, 7} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(2)^4+t(2)^4+t(1)^2 t(2)^3-2 t(1) t(2)^3-t(1)^2 t(2)^2+3 t(1) t(2)^2-t(2)^2-2 t(1) t(2)+t(2)+t(1)^2+t(1)}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{9/2}-2 q^{7/2}+3 q^{5/2}-\frac{2}{q^{5/2}}-4 q^{3/2}+\frac{3}{q^{3/2}}-\frac{1}{q^{11/2}}+4 \sqrt{q}-\frac{4}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^5+a^5 z^{-1} -z^5 a-4 z^3 a-5 z a-2 a z^{-1} -z^5 a^{-1} -3 z^3 a^{-1} -z a^{-1} + a^{-1} z^{-1} +z^3 a^{-3} +2 z a^{-3} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^7-7 a^5 z^5+14 a^5 z^3-9 a^5 z+a^5 z^{-1} +z^6 a^{-4} -2 a^4 z^4-4 z^4 a^{-4} +4 a^4 z^2+3 z^2 a^{-4} -a^4+2 z^7 a^{-3} -2 a^3 z^5-8 z^5 a^{-3} +6 a^3 z^3+7 z^3 a^{-3} -3 a^3 z-2 z a^{-3} +a^2 z^8+2 z^8 a^{-2} -7 a^2 z^6-8 z^6 a^{-2} +15 a^2 z^4+8 z^4 a^{-2} -10 a^2 z^2-5 z^2 a^{-2} +3 a^2+2 a^{-2} +a z^9+z^9 a^{-1} -6 a z^7-3 z^7 a^{-1} +13 a z^5-13 a z^3+2 z^3 a^{-1} +8 a z-2 a z^{-1} - a^{-1} z^{-1} +3 z^8-16 z^6+29 z^4-22 z^2+5} (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



