L9n27

From Knot Atlas
Revision as of 02:45, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L9n26.gif

L9n26

L9n28.gif

L9n28

L9n27.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n27 at Knotilus!

L9n27 is [math]\displaystyle{ 9^3_{21} }[/math] in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n27's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X9,18,10,15 X8493 X5,17,6,16 X17,5,18,14 X15,10,16,11 X2,12,3,11
Gauss code {1, -9, 5, -3}, {-8, 6, -7, 4}, {-6, -1, 2, -5, -4, 8, 9, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L9n27 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) 0 (db)
Jones polynomial [math]\displaystyle{ q^3-q^2+q+1+ q^{-1} + q^{-2} + q^{-4} - q^{-5} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z^2 a^4-2 a^4+z^4 a^2+5 z^2 a^2+a^2 z^{-2} +6 a^2-z^4-5 z^2-2 z^{-2} -6+z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a z^7+z^7 a^{-1} +a^4 z^6+2 a^2 z^6+z^6 a^{-2} +2 z^6+a^5 z^5+a^3 z^5-5 a z^5-5 z^5 a^{-1} -5 a^4 z^4-13 a^2 z^4-5 z^4 a^{-2} -13 z^4-4 a^5 z^3-6 a^3 z^3+2 a z^3+4 z^3 a^{-1} +6 a^4 z^2+22 a^2 z^2+6 z^2 a^{-2} +22 z^2+2 a^5 z+6 a^3 z+6 a z+2 z a^{-1} -4 a^4-12 a^2-4 a^{-2} -11-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5          0
3       11 0
1     31   2
-1    141   2
-3   112    2
-5   1      1
-7 111      1
-9          0
-111         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n26.gif

L9n26

L9n28.gif

L9n28