L9n27
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n27 is [math]\displaystyle{ 9^3_{21} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n27's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X9,18,10,15 X8493 X5,17,6,16 X17,5,18,14 X15,10,16,11 X2,12,3,11 |
| Gauss code | {1, -9, 5, -3}, {-8, 6, -7, 4}, {-6, -1, 2, -5, -4, 8, 9, -2, 3, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | 0 (db) |
| Jones polynomial | [math]\displaystyle{ q^3-q^2+q+1+ q^{-1} + q^{-2} + q^{-4} - q^{-5} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^4-2 a^4+z^4 a^2+5 z^2 a^2+a^2 z^{-2} +6 a^2-z^4-5 z^2-2 z^{-2} -6+z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a z^7+z^7 a^{-1} +a^4 z^6+2 a^2 z^6+z^6 a^{-2} +2 z^6+a^5 z^5+a^3 z^5-5 a z^5-5 z^5 a^{-1} -5 a^4 z^4-13 a^2 z^4-5 z^4 a^{-2} -13 z^4-4 a^5 z^3-6 a^3 z^3+2 a z^3+4 z^3 a^{-1} +6 a^4 z^2+22 a^2 z^2+6 z^2 a^{-2} +22 z^2+2 a^5 z+6 a^3 z+6 a z+2 z a^{-1} -4 a^4-12 a^2-4 a^{-2} -11-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



