L11a435
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a435's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,12,19,11 X14,8,15,7 X8,14,9,13 X22,20,13,19 X20,16,21,15 X16,22,17,21 X12,18,5,17 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -9}, {5, -4, 7, -8, 9, -3, 6, -7, 8, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(v-1) \left(-u v w^3+4 u v w^2-4 u v w+2 u v+u w^3-2 u w^2+2 u w+2 v^2 w^2-2 v^2 w+v^2+2 v w^3-4 v w^2+4 v w-v\right)}{\sqrt{u} v^{3/2} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+3 q^7-7 q^6+13 q^5-18 q^4+21 q^3-20 q^2+19 q-13+9 q^{-1} -3 q^{-2} + q^{-3} } (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - a^{-8} +3 z^2 a^{-6} - a^{-6} z^{-2} +2 a^{-6} -3 z^4 a^{-4} -2 z^2 a^{-4} +4 a^{-4} z^{-2} +4 a^{-4} +z^6 a^{-2} +a^2 z^2-5 z^2 a^{-2} -5 a^{-2} z^{-2} +a^2-9 a^{-2} -2 z^4-z^2+2 z^{-2} +3} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10} a^{-4} +4 z^9 a^{-1} +8 z^9 a^{-3} +4 z^9 a^{-5} +16 z^8 a^{-2} +16 z^8 a^{-4} +6 z^8 a^{-6} +6 z^8+3 a z^7+4 z^7 a^{-1} +3 z^7 a^{-3} +7 z^7 a^{-5} +5 z^7 a^{-7} +a^2 z^6-46 z^6 a^{-2} -38 z^6 a^{-4} -5 z^6 a^{-6} +3 z^6 a^{-8} -15 z^6-6 a z^5-32 z^5 a^{-1} -48 z^5 a^{-3} -29 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+52 z^4 a^{-2} +35 z^4 a^{-4} -z^4 a^{-6} -5 z^4 a^{-8} +18 z^4+3 a z^3+39 z^3 a^{-1} +68 z^3 a^{-3} +37 z^3 a^{-5} +3 z^3 a^{-7} -2 z^3 a^{-9} +3 a^2 z^2-44 z^2 a^{-2} -22 z^2 a^{-4} +4 z^2 a^{-6} +3 z^2 a^{-8} -18 z^2-23 z a^{-1} -41 z a^{-3} -21 z a^{-5} -2 z a^{-7} +z a^{-9} -a^2+23 a^{-2} +14 a^{-4} - a^{-8} +10+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



