L11a434
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
Brunnian link |
Link Presentations
[edit Notes on L11a434's Link Presentations]
| Planar diagram presentation | X6172 X16,12,17,11 X8493 X2,18,3,17 X14,6,15,5 X18,7,19,8 X12,16,5,15 X20,14,21,13 X22,9,13,10 X10,21,11,22 X4,19,1,20 |
| Gauss code | {1, -4, 3, -11}, {5, -1, 6, -3, 9, -10, 2, -7}, {8, -5, 7, -2, 4, -6, 11, -8, 10, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1) (w-1) (v+w-1) (v w-v-w)}{\sqrt{u} v^{3/2} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-4 q^5+8 q^4-14 q^3+21 q^2-22 q+24-20 q^{-1} +16 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} } (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -a^4 z^2+a^2 z^2-3 z^2 a^{-2} +z^2 a^{-4} +2 z^2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^{10} a^{-2} +2 z^{10}+7 a z^9+13 z^9 a^{-1} +6 z^9 a^{-3} +10 a^2 z^8+14 z^8 a^{-2} +7 z^8 a^{-4} +17 z^8+8 a^3 z^7-a z^7-20 z^7 a^{-1} -7 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-14 a^2 z^6-46 z^6 a^{-2} -18 z^6 a^{-4} +z^6 a^{-6} -45 z^6+a^5 z^5-11 a^3 z^5-12 a z^5+3 z^5 a^{-1} -7 z^5 a^{-3} -10 z^5 a^{-5} -5 a^4 z^4+8 a^2 z^4+48 z^4 a^{-2} +16 z^4 a^{-4} -2 z^4 a^{-6} +43 z^4-a^5 z^3+5 a^3 z^3+7 a z^3+5 z^3 a^{-1} +10 z^3 a^{-3} +6 z^3 a^{-5} +2 a^4 z^2-4 a^2 z^2-20 z^2 a^{-2} -6 z^2 a^{-4} -20 z^2+1-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



