L10a98
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a98's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X18,7,19,8 X20,15,9,16 X16,19,17,20 X8,9,1,10 X4,13,5,14 X6,17,7,18 |
| Gauss code | {1, -2, 3, -9, 4, -10, 5, -8}, {8, -1, 2, -3, 9, -4, 6, -7, 10, -5, 7, -6} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(2)^3 t(1)^3-t(2)^2 t(1)^3-t(2)^3 t(1)^2+3 t(2)^2 t(1)^2-t(2) t(1)^2-t(2)^2 t(1)+3 t(2) t(1)-t(1)-t(2)+2}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{27/2}}+\frac{2}{q^{25/2}}-\frac{3}{q^{23/2}}+\frac{4}{q^{21/2}}-\frac{5}{q^{19/2}}+\frac{5}{q^{17/2}}-\frac{4}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{3}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{11} z^5+4 a^{11} z^3+3 a^{11} z-a^9 z^7-5 a^9 z^5-6 a^9 z^3+a^9 z^{-1} -a^7 z^7-6 a^7 z^5-11 a^7 z^3-7 a^7 z-a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^3 a^{17}+z a^{17}-2 z^4 a^{16}+2 z^2 a^{16}-2 z^5 a^{15}+z^3 a^{15}-2 z^6 a^{14}+2 z^4 a^{14}-z^2 a^{14}-2 z^7 a^{13}+4 z^5 a^{13}-3 z^3 a^{13}+z a^{13}-2 z^8 a^{12}+7 z^6 a^{12}-9 z^4 a^{12}+5 z^2 a^{12}-z^9 a^{11}+3 z^7 a^{11}-3 z^5 a^{11}+5 z^3 a^{11}-3 z a^{11}-3 z^8 a^{10}+13 z^6 a^{10}-15 z^4 a^{10}+5 z^2 a^{10}-z^9 a^9+4 z^7 a^9-3 z^5 a^9-z^3 a^9+2 z a^9-a^9 z^{-1} -z^8 a^8+4 z^6 a^8-2 z^4 a^8-3 z^2 a^8+a^8-z^7 a^7+6 z^5 a^7-11 z^3 a^7+7 z a^7-a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



