7 5
From Knot Atlas
Jump to navigationJump to search
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^4+4 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 17, -4 } |
| Jones polynomial | [math]\displaystyle{ - q^{-9} +2 q^{-8} -3 q^{-7} +3 q^{-6} -3 q^{-5} +3 q^{-4} - q^{-3} + q^{-2} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^8 \left(-z^2\right)-a^8+a^6 z^4+2 a^6 z^2+a^4 z^4+3 a^4 z^2+2 a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^{11} z^3-a^{11} z+2 a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-2 a^9 z^3+a^9 z+a^8 z^6+a^8 z^2-a^8+3 a^7 z^5-4 a^7 z^3+a^7 z+a^6 z^6-a^6 z^4+a^5 z^5-a^5 z^3-a^5 z+a^4 z^4-3 a^4 z^2+2 a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{28}-q^{22}-q^{18}+q^{16}+q^{14}+q^{12}+2 q^{10}+q^6 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{148}-q^{146}+2 q^{144}-2 q^{142}+q^{138}-2 q^{136}+5 q^{134}-5 q^{132}+4 q^{130}-2 q^{128}-3 q^{126}+4 q^{124}-6 q^{122}+5 q^{120}-3 q^{118}-q^{116}+3 q^{114}-3 q^{112}+q^{110}+2 q^{108}-5 q^{106}+4 q^{104}-3 q^{102}-2 q^{100}+5 q^{98}-7 q^{96}+8 q^{94}-7 q^{92}+2 q^{90}+2 q^{88}-6 q^{86}+6 q^{84}-7 q^{82}+4 q^{80}-2 q^{76}+3 q^{74}-3 q^{72}+2 q^{70}+3 q^{68}-5 q^{66}+3 q^{64}-2 q^{60}+7 q^{58}-5 q^{56}+5 q^{54}-q^{52}+4 q^{48}-4 q^{46}+5 q^{44}-q^{42}+q^{40}+q^{38}-q^{36}+2 q^{34}+q^{30} }[/math] |
Further Quantum Invariants
Further quantum knot invariants for 7_5.
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{19}+q^{17}-q^{15}+2 q^7+q^3 }[/math] |
| 2 | [math]\displaystyle{ q^{52}-q^{50}-q^{48}+3 q^{46}-q^{44}-3 q^{42}+3 q^{40}-2 q^{36}+q^{34}-q^{30}-2 q^{28}+q^{26}+q^{24}-3 q^{22}+q^{20}+3 q^{18}-2 q^{16}+q^{14}+3 q^{12}+q^6 }[/math] |
| 3 | [math]\displaystyle{ -q^{99}+q^{97}+q^{95}-q^{93}-2 q^{91}+q^{89}+5 q^{87}-q^{85}-7 q^{83}-q^{81}+7 q^{79}+3 q^{77}-7 q^{75}-3 q^{73}+7 q^{71}+4 q^{69}-4 q^{67}-3 q^{65}+2 q^{63}+2 q^{61}-3 q^{57}-2 q^{55}+q^{53}+4 q^{51}-2 q^{49}-6 q^{47}+7 q^{43}-q^{41}-7 q^{39}-2 q^{37}+6 q^{35}+3 q^{33}-6 q^{31}-3 q^{29}+4 q^{27}+5 q^{25}-q^{23}-2 q^{21}+q^{19}+3 q^{17}+q^{15}+q^9 }[/math] |
| 4 | [math]\displaystyle{ q^{160}-q^{158}-q^{156}+q^{154}+2 q^{150}-3 q^{148}-3 q^{146}+2 q^{144}+3 q^{142}+9 q^{140}-5 q^{138}-12 q^{136}-4 q^{134}+5 q^{132}+19 q^{130}-15 q^{126}-13 q^{124}+24 q^{120}+8 q^{118}-12 q^{116}-16 q^{114}-5 q^{112}+17 q^{110}+9 q^{108}-4 q^{106}-10 q^{104}-6 q^{102}+7 q^{100}+7 q^{98}+3 q^{96}-2 q^{94}-5 q^{92}-3 q^{90}+4 q^{88}+9 q^{86}+q^{84}-7 q^{82}-12 q^{80}+2 q^{78}+13 q^{76}+6 q^{74}-7 q^{72}-20 q^{70}+q^{68}+16 q^{66}+10 q^{64}-4 q^{62}-22 q^{60}-5 q^{58}+11 q^{56}+13 q^{54}+5 q^{52}-17 q^{50}-10 q^{48}+2 q^{46}+10 q^{44}+10 q^{42}-6 q^{40}-7 q^{38}-4 q^{36}+3 q^{34}+8 q^{32}+q^{30}-2 q^{26}+3 q^{22}+q^{20}+q^{18}+q^{12} }[/math] |
| 5 | [math]\displaystyle{ -q^{235}+q^{233}+q^{231}-q^{229}+q^{221}+2 q^{219}-2 q^{217}-5 q^{215}-3 q^{213}+q^{211}+8 q^{209}+10 q^{207}+4 q^{205}-12 q^{203}-21 q^{201}-9 q^{199}+12 q^{197}+29 q^{195}+22 q^{193}-7 q^{191}-37 q^{189}-36 q^{187}+38 q^{183}+46 q^{181}+12 q^{179}-34 q^{177}-53 q^{175}-23 q^{173}+29 q^{171}+51 q^{169}+29 q^{167}-18 q^{165}-45 q^{163}-30 q^{161}+8 q^{159}+35 q^{157}+27 q^{155}-2 q^{153}-23 q^{151}-24 q^{149}-5 q^{147}+13 q^{145}+17 q^{143}+8 q^{141}-3 q^{139}-12 q^{137}-13 q^{135}-2 q^{133}+10 q^{131}+16 q^{129}+12 q^{127}-7 q^{125}-21 q^{123}-14 q^{121}+7 q^{119}+27 q^{117}+23 q^{115}-7 q^{113}-34 q^{111}-26 q^{109}+4 q^{107}+36 q^{105}+37 q^{103}-3 q^{101}-41 q^{99}-41 q^{97}-4 q^{95}+37 q^{93}+45 q^{91}+13 q^{89}-34 q^{87}-47 q^{85}-22 q^{83}+20 q^{81}+41 q^{79}+29 q^{77}-6 q^{75}-36 q^{73}-32 q^{71}-4 q^{69}+21 q^{67}+29 q^{65}+14 q^{63}-11 q^{61}-23 q^{59}-16 q^{57}-q^{55}+13 q^{53}+15 q^{51}+5 q^{49}-4 q^{47}-9 q^{45}-6 q^{43}+q^{41}+6 q^{39}+4 q^{37}+3 q^{35}-2 q^{31}+2 q^{27}+q^{25}+q^{23}+q^{21}+q^{15} }[/math] |
| 6 | [math]\displaystyle{ q^{324}-q^{322}-q^{320}+q^{318}-2 q^{312}+2 q^{310}-2 q^{306}+4 q^{304}+3 q^{302}+q^{300}-5 q^{298}-2 q^{296}-8 q^{294}-8 q^{292}+8 q^{290}+16 q^{288}+17 q^{286}+q^{284}-4 q^{282}-31 q^{280}-39 q^{278}-6 q^{276}+28 q^{274}+55 q^{272}+41 q^{270}+19 q^{268}-49 q^{266}-90 q^{264}-61 q^{262}+4 q^{260}+78 q^{258}+100 q^{256}+84 q^{254}-26 q^{252}-117 q^{250}-125 q^{248}-58 q^{246}+54 q^{244}+123 q^{242}+142 q^{240}+32 q^{238}-89 q^{236}-140 q^{234}-104 q^{232}+2 q^{230}+92 q^{228}+142 q^{226}+68 q^{224}-34 q^{222}-100 q^{220}-98 q^{218}-33 q^{216}+37 q^{214}+93 q^{212}+63 q^{210}+6 q^{208}-44 q^{206}-60 q^{204}-38 q^{202}-2 q^{200}+39 q^{198}+40 q^{196}+24 q^{194}-4 q^{192}-24 q^{190}-32 q^{188}-23 q^{186}+q^{184}+22 q^{182}+35 q^{180}+21 q^{178}-5 q^{176}-37 q^{174}-39 q^{172}-21 q^{170}+23 q^{168}+58 q^{166}+45 q^{164}+4 q^{162}-54 q^{160}-66 q^{158}-43 q^{156}+33 q^{154}+92 q^{152}+74 q^{150}+11 q^{148}-73 q^{146}-100 q^{144}-76 q^{142}+30 q^{140}+115 q^{138}+109 q^{136}+38 q^{134}-67 q^{132}-119 q^{130}-115 q^{128}-4 q^{126}+102 q^{124}+127 q^{122}+79 q^{120}-22 q^{118}-98 q^{116}-134 q^{114}-57 q^{112}+42 q^{110}+101 q^{108}+100 q^{106}+39 q^{104}-33 q^{102}-105 q^{100}-82 q^{98}-24 q^{96}+37 q^{94}+73 q^{92}+65 q^{90}+28 q^{88}-40 q^{86}-56 q^{84}-47 q^{82}-17 q^{80}+18 q^{78}+41 q^{76}+40 q^{74}+6 q^{72}-10 q^{70}-25 q^{68}-24 q^{66}-13 q^{64}+7 q^{62}+19 q^{60}+10 q^{58}+8 q^{56}-q^{54}-7 q^{52}-9 q^{50}-2 q^{48}+4 q^{46}+2 q^{44}+5 q^{42}+3 q^{40}+q^{38}-2 q^{36}+2 q^{32}+q^{28}+q^{26}+q^{24}+q^{18} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{28}-q^{22}-q^{18}+q^{16}+q^{14}+q^{12}+2 q^{10}+q^6 }[/math] |
| 1,1 | [math]\displaystyle{ q^{76}-2 q^{74}+4 q^{72}-6 q^{70}+9 q^{68}-12 q^{66}+14 q^{64}-14 q^{62}+13 q^{60}-10 q^{58}+2 q^{56}+4 q^{54}-12 q^{52}+20 q^{50}-22 q^{48}+28 q^{46}-26 q^{44}+22 q^{42}-22 q^{40}+8 q^{38}-10 q^{36}-4 q^{34}+6 q^{32}-12 q^{30}+16 q^{28}-10 q^{26}+16 q^{24}-6 q^{22}+10 q^{20}-2 q^{18}+4 q^{16}+q^{12} }[/math] |
| 2,0 | [math]\displaystyle{ q^{70}+q^{62}-2 q^{58}+q^{54}+q^{48}-3 q^{44}-3 q^{42}-2 q^{40}-3 q^{38}-2 q^{36}+q^{34}+q^{32}+3 q^{28}+3 q^{26}+2 q^{24}+q^{22}+3 q^{20}+2 q^{18}+q^{12} }[/math] |
| 3,0 | [math]\displaystyle{ -q^{126}-q^{116}+2 q^{114}+2 q^{112}+2 q^{110}-2 q^{108}-5 q^{106}-q^{104}+2 q^{102}+3 q^{100}-2 q^{98}-3 q^{96}+2 q^{94}+6 q^{92}+4 q^{90}-2 q^{88}-2 q^{86}+2 q^{84}+5 q^{82}+q^{80}-3 q^{78}-q^{76}+q^{74}-4 q^{70}-4 q^{68}-q^{66}-2 q^{64}-6 q^{62}-6 q^{60}-3 q^{58}+q^{56}-3 q^{54}-5 q^{52}-2 q^{50}+5 q^{48}+6 q^{46}-q^{42}+2 q^{40}+8 q^{38}+6 q^{36}+q^{34}-q^{32}+2 q^{30}+4 q^{28}+3 q^{26}+q^{18} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{62}-q^{60}+2 q^{56}-2 q^{54}+3 q^{50}-2 q^{48}-q^{46}-2 q^{42}-2 q^{40}-q^{38}-q^{34}-2 q^{32}+q^{30}+q^{28}-2 q^{26}+4 q^{24}+3 q^{22}+q^{20}+3 q^{18}+2 q^{16}+q^{12} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{37}-q^{33}-q^{29}-q^{25}+q^{21}+q^{19}+2 q^{17}+q^{15}+2 q^{13}+q^9 }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{100}-2 q^{98}+3 q^{96}-q^{94}-3 q^{92}+8 q^{90}-10 q^{88}+6 q^{86}+3 q^{84}-12 q^{82}+18 q^{80}-15 q^{78}+4 q^{76}+6 q^{74}-17 q^{72}+17 q^{70}-10 q^{68}+3 q^{66}+9 q^{64}-2 q^{62}+3 q^{60}+6 q^{58}-6 q^{56}-7 q^{54}+5 q^{52}-26 q^{50}+6 q^{48}-14 q^{46}-12 q^{44}+13 q^{42}-17 q^{40}+17 q^{38}+3 q^{36}+3 q^{34}+15 q^{32}-q^{30}+10 q^{28}+4 q^{26}+2 q^{24}+4 q^{22}+q^{18} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{80}-q^{76}+q^{74}+2 q^{72}+2 q^{66}+q^{64}-2 q^{62}-2 q^{60}-q^{58}-4 q^{56}-5 q^{54}-q^{52}-2 q^{50}-3 q^{48}+q^{44}-2 q^{42}-q^{40}+2 q^{38}+2 q^{36}+q^{34}+3 q^{32}+6 q^{30}+3 q^{28}+3 q^{26}+3 q^{24}+2 q^{22}+q^{18} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{46}-q^{42}-q^{40}-q^{36}-q^{32}+q^{26}+q^{24}+2 q^{22}+2 q^{20}+q^{18}+2 q^{16}+q^{12} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{62}+q^{60}-2 q^{58}+2 q^{56}-2 q^{54}+2 q^{52}-q^{50}+q^{46}-2 q^{44}+2 q^{42}-4 q^{40}+3 q^{38}-4 q^{36}+3 q^{34}-2 q^{32}+q^{30}+q^{28}+2 q^{24}-q^{22}+3 q^{20}-q^{18}+2 q^{16}+q^{12} }[/math] |
| 1,0 | [math]\displaystyle{ q^{100}-q^{96}-q^{94}+q^{92}+2 q^{90}-2 q^{86}-q^{84}+2 q^{82}+2 q^{80}-q^{78}-2 q^{76}+q^{72}-q^{70}-2 q^{68}-q^{66}+q^{64}-q^{60}-2 q^{58}+q^{54}-q^{52}-2 q^{50}+2 q^{46}-q^{42}-q^{40}+3 q^{38}+3 q^{36}+q^{34}-q^{32}+q^{30}+2 q^{28}+2 q^{26}+q^{18} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{86}-q^{84}+q^{82}-q^{80}+2 q^{78}-2 q^{76}+q^{74}-q^{72}+2 q^{70}-q^{66}-2 q^{62}+q^{60}-4 q^{58}-4 q^{54}+2 q^{52}-3 q^{50}+2 q^{48}-3 q^{46}+q^{44}+3 q^{34}+q^{32}+4 q^{30}+q^{28}+4 q^{26}+q^{24}+2 q^{22}+q^{18} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{148}-q^{146}+2 q^{144}-2 q^{142}+q^{138}-2 q^{136}+5 q^{134}-5 q^{132}+4 q^{130}-2 q^{128}-3 q^{126}+4 q^{124}-6 q^{122}+5 q^{120}-3 q^{118}-q^{116}+3 q^{114}-3 q^{112}+q^{110}+2 q^{108}-5 q^{106}+4 q^{104}-3 q^{102}-2 q^{100}+5 q^{98}-7 q^{96}+8 q^{94}-7 q^{92}+2 q^{90}+2 q^{88}-6 q^{86}+6 q^{84}-7 q^{82}+4 q^{80}-2 q^{76}+3 q^{74}-3 q^{72}+2 q^{70}+3 q^{68}-5 q^{66}+3 q^{64}-2 q^{60}+7 q^{58}-5 q^{56}+5 q^{54}-q^{52}+4 q^{48}-4 q^{46}+5 q^{44}-q^{42}+q^{40}+q^{38}-q^{36}+2 q^{34}+q^{30} }[/math] |
.
Computer Talk
The above data is available with the Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 5"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^4+4 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ - q^{-9} +2 q^{-8} -3 q^{-7} +3 q^{-6} -3 q^{-5} +3 q^{-4} - q^{-3} + q^{-2} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^8 \left(-z^2\right)-a^8+a^6 z^4+2 a^6 z^2+a^4 z^4+3 a^4 z^2+2 a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^{11} z^3-a^{11} z+2 a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-2 a^9 z^3+a^9 z+a^8 z^6+a^8 z^2-a^8+3 a^7 z^5-4 a^7 z^3+a^7 z+a^6 z^6-a^6 z^4+a^5 z^5-a^5 z^3-a^5 z+a^4 z^4-3 a^4 z^2+2 a^4 }[/math] |